2012-03-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/710073摘要:本計畫中以低成本、溶液製程之製備方式,進行倒置型高分子太陽能電池之研究,並將此經驗成果結合新的低能隙高分子材料,開發出高表現的太陽能電池元件。在三明治結構中利用不同的結構、加入功能性中介層以及控制主動層的奈米型態來修飾元件,進行一系列對倒置型高分子太陽能電池的研究及改良。 我們嘗試在有機施體-受體混摻結構的主動層中,置換電子受體材料,形成更加良好的能階匹配以提升元件開路電壓及光電轉換效率表現。以當前發展技術純熟的施體 P3HT-base 系統為主的倒置結構中,改以新穎的 IC60BA 取代常用的 PC60BM 受體材料,但遇到了IC60BA相分離現象的問題,使得短路電流與開路電壓受到限制,為了解決這個問題、我們提出以混摻高分子量的PVK,來改善巨觀的IC60BA:P3HT 主動層均勻性,最後發現電洞高遷移率的PVK能有效的改善巨觀的成膜機械性能,輔以溶液製程之電動傳輸層CuOx的使用,我們將開路電壓從0.56V提升到0.82V、短路電流從 7.41 mA/cm2提升到9.54mA/cm2 ,最後整體元件效率從 2.2%提升到 4.5%。 另外在低能隙材料系統的研究,使用PBDTTT-C/PC71BM為主動層的系統下。我們奠基於去年使用DCB和CB形成混合溶劑作為主動層的溶劑的研究成果,加入DIO作為溶劑添加劑製作倒置結構高分子太陽能電池。混合溶劑的使用讓主動層的形貌獲得改善因此有較好的載子傳輸,之後再對主動層的厚度以及無機中介層氧化鉬的厚度進行最佳化,藉由以上的改進,使元件的短路電流從 3.82 mA/cm2 提升到 13.50 mA/cm2,填充因子從33%提升到57%,也因此使元件光電轉換效率從0.92%提升到5.35%。 另外我們和Indian institute of Science, SSCU合作使用其開發之有機低能隙高分子材料G-710,搭配富勒烯衍生物PC71BM作為電子受體製作有機太陽能電池,其元件吸光層具有十分優良之吸收特性,吸收截止於850nm,深具發展潛力,經由我們在調整元件製程及材料比例後,將元件效能從1.4%提升到2.26%。 在倒置結構太陽能電池穩定度的研究上,我們持續追蹤研究去年使用高穩定度的導電高分子a-PTPTBT作為電子施體的元件轉換效率,其HOMO能階較低,越過氧化門檻-5.27eV,因此較不會與氧反應而可在大氣下,而至今已存放超過17500小時而保留其固有效率的95%以上。 <br> Abstract: In this project, we focus on the inverted polymer solar cells based on low-cost and solution process. We combine the experience and results with new low-bandgap polymer materials, developing high-performance solar cells. The performance of solar cells was improved by changing different device structure, inserting functional interlayer, and controlling the nano-morphology of photoactive layer. We used different electron acceptor materials in heterojunction photoactive layer, forming better band match to enhance open-circuit voltage(Voc) and power conversion efficiency(PCE). In the well developed P3HT-base system, we substitute a novel material IC60BA for PC60BM as electron acceptor material. We provided a method to improve the macroscopic uniformity of IC60BA:P3HT photoactive layer. After all improving process, Voc was enhanced from 0.56V to 0.82V, Jsc from 7.41mA/cm2 to 9.54mA/cm2, and PCE from 2.2% to 4.5%. On the other hand, in the research of low bandgap, with PBDTTT-C/PC71BM as active layer, we used mixed solvents and additives methods to enhance carriers transportation. By the optimization, the device Jsc enhanced from 3.82 mA/cm2 to 13.50 mA/cm2 and PCE from 0.92% to 5.35%. We cooperate with Indian institute of Science, using a novel organic low-bandgap material, G-710 as the electron donor in photoactive layer.G-710 has a very wide range of absorption. The absorption edge is near 850nm. As a result, the theoretical short circuit current is high. The development of this material system has very good potential. The stability of inverted polymer solar cells was further improved while using air-stable polymer, a-PTPTBT, which has its HOMO level below the threshold for oxidation of air and can be stored in air without being oxidized. We kept tracking the device fabricated last year in the first year project. The device could retain over 95% of its maximum efficiency after 17500 hours of storage in air even without encapsulation.透明導電玻璃倒置結構溶液製程金屬氧化層穩定性有機無機混摻太陽能電池混合溶劑相分離分佈型態控制添加劑低能隙高分子主動層緩衝層光電轉換效率。inverted structuresolution processmetal oxidestabilityOrganicinorganichybridsolar cellmixed solventmorphology controladditiveslow bandgap polymerbuffer layer.反向結構低能隙高分子太陽能電池