莊正良臺灣大學:數學研究所蔡宛育Tsai, Wan-YuWan-YuTsai2007-11-282018-06-282007-11-282018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/59410在論文的第一部份所探討的重點在於有限生成模擴張(module-finite extensions)、 有限生成環擴張(ring-finite extensions)及整擴張(integral extensions)之間的關係。而最終我們以 ring-finiteness、integrality 及 PI 的性質完整刻劃出 module-finiteness 性質,也推廣了 Pare 與 Schelter 的定理。 論文的第二部份,在統整了 Goldman 與 Krull 於交換環上有關 G-domains、 G-ideals 及 Jacobson rings 的概念與定理之後,我們的目標在於將這些相關的結論 推廣至非交換環。在此,交換中的整環(integral domains)與非交換質環(prime rings)相對應,而交換中的體(fields)則對應至非交換的單環(simple rings)。Abstract In this paper the main theorems are as follows: (i) Assume S = RCS(R), S is a module- nite extension of R if and only if CS(R) is a PI-ring and the ring extension S=R is ring- nite and integral. (ii) Let S R be prime rings and S is a ring- nite centralizing extension of R by a PI-ring. Then S is a G-ring if and only if R is a G-ring and S is algebraic over R. (iii) If the ring R is a ~J-ring, then any ring- nite centralizing extension S of R by a PI-ring is also a ~J-ring.0 Introduction . . . . . . . . . . . . . . . . . . . . 1 1 Preliminaries . . . . . . . . . . . . . . . . . . . . 2 1.1 Rings of Quotients . . . . . . . . . . . . . . . 2 1.2 Shirshov's Theorem . . . . . . . . . . . . . . . 2 2 Finite Extensions and Integral Extensions . . . . . . 6 3 G-domains, G-ideals and Jacobson Rings: Commutative Case . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Prime Centralizing Extensions . . . . . . . . . . . .18 5 G-rings, G-ideals: Noncommutative Case . . . . . . . 22 6 Reference . . . . . . . . . . . . . . . . . . . . .. 28349543 bytesapplication/pdfen-US整擴張有限生成環擴張G-環G-理想Integral ExtensionsRing-finite ExtensionsG-ringsG-ideals由多項恆等式環生成的整擴張與 Jacobson 環Integral Extensions by a PI-ring and Jacobson Ringsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/59410/1/ntu-94-R92221002-1.pdf