謝傳璋臺灣大學:工程科學及海洋工程學研究所溫冠宇Wen, Quan-YuQuan-YuWen2010-07-142018-06-282010-07-142018-06-282009U0001-1507200923344100http://ntur.lib.ntu.edu.tw//handle/246246/188980目前通用的水下滑翔機所使用的浮力引擎,多是以螺桿推動氣囊的方式,控制水室的進/排水。本研究的氣壓式浮力引擎是利用高壓鋼瓶裝載液態二氧化碳,以導管先將高壓氣體導入緩衝室,再以電磁閥控制,最後將較低壓的氣體灌入氣囊,達到控制水室之進/排水目的。浮力引擎的作動,是以壓力感測器所測得的水深資料,配合自行製作的微控制器,驅動三個電磁閥的開關來完成。 此外,為避免因機體故障而無法回收。另以一獨立的微控制器,控制機體尾端之安全氣囊,氣囊會在設定的時間,自動充氣,使機體上浮至水面,方便回收作業。 機體製作完成後,分別在工科海洋系之試驗水槽與野外水域進行測試,結果與預期相符。The principle of the traditional buoyancy engine used in the underwater glider, is to use a screw rod to push a bladder, so that the inflow/outflow of the water volume in the water chamber is controlled by the bladder volume change. In this paper, the design and test of a underwater glider with pressure type buoyancy engine is conducted. The pressure type buoyancy engine is consisted of a tank with high pressurized liquid CO2, and a balloon in a buoyancy control water chamber. Through the electronic control valves and piping design, the vaporized CO2 would flow in (or out )of the balloon so to push the water out (or in) of the water chamber, eventually increased (and decrease )the buoyancy force of the glider.he vertical lift /sink distance is monitored and controlled by a microprocessor and water depth pressure sensor to minimize the power consumption of the battery.n order to avoid any malfunction and for the sake of recycling, an airbag is connected at the tail of the glider, which is controlled by an independent micro-controller, so that the airbag would inflate at time preset in advance, enable the glider to resurface. series of test in the towing tank and field test in the reservoir have been conducted to verify the feasibility of this concept. Testing result shows that the concept of the design is satisfied.摘要...............................Ibstract...........................II錄...............................III目錄.............................VI目錄.............................X一章 緒論.......................1-1 前言 ..........................1-2 研究目的及方法................1-3 文獻回顧......................2-4 論文架構......................3二章 理論基礎...................4-1 模型簡述及其外型與尺規格......4-2 座標方位與角度轉換............4-3 機體受力......................6-4 附加質量與附加轉動慣量........7-5 運動方程式....................7三章 實驗製作與流程.............15-1 氣壓式水下滑翔機模型簡介......15-2 氣壓式浮力引擎製作............16-2-1 CO2氣體性質.................19-2-2 緩衝室......................20-2-3 氣囊充氣次數理論計算........23-2-4 充氣次數之理論值與實測值差異..25-3 單晶片控制器製作..............27-3-1 微處理器簡介................27-3-2 Microchip PIC18F4520晶片....28-3-3 PIC18F4520微控制器腳位功能..30-3-4 控制器製作流程..............30-3-5 安全回收裝置................34-4 壓力感測器原理及校正..........38-5 試驗標準流程與試驗之注意事項..41四章 試驗結果...................43-1 水槽試驗......................43-2 野外試驗......................49-2-1 野外試驗結果................50-2-2 野外試驗之配重調整..........51五章 結論與未來工作建議.........55-1 研究結論......................55-2 未來工作建議..................56考文獻...........................58錄...............................59錄一 CO2氣體性質表..............59錄二 海水溫度...................61錄三 控制器安裝說明.............623190370 bytesapplication/pdfen-US水下滑翔機氣壓式浮力引擎單晶片緩衝室Underwater GliderPressure Type Buoyancy engineMicro-controllerBuffer chamber氣壓式水下滑翔機製作Development of Pressure Type Underwater Gliderthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/188980/1/ntu-98-R96525046-1.pdf