王耀輝Wang, Yaw-Huei臺灣大學:財務金融學研究所游明翰Yu, Ming-HanMing-HanYu2010-05-112018-07-092010-05-112018-07-092009U0001-0207200911213900http://ntur.lib.ntu.edu.tw//handle/246246/182739二元選擇權是由兩個標的資產所衍生出的選擇權,其價格會與兩個資產的變動與相依結構有很大的相關性。但由於其市場透明度不高,平常很難於公開市場觀察二元選擇權的價格。本篇論文將取三種市場上較廣為被交易的二元選擇權來評價,利用copula-GARCH模型來檢測在不同的邊際分配參數設定下,二元選擇權價格對copula函數選擇的敏感度。們的研究結果可整理為三大結論,首先,Frank copula模型常常會產生較其他copula模型差異較大之評價結果。第二點,二元彩虹選擇權的價格,對copula模型的選擇最為敏感。最後,copula-GARCH的二元選擇權評價模型中,對殘插值的分配設定會嚴重影響評價的結果。總結來說,相依結構的設定對二元選擇權的價格會產生顯著的影響,是在評價二元選擇權時不可被忽略的一環。Bivariate option is the contingent claims derives from a pair of underlying assets. The underlying assets can be equity, commodities, foreign exchange rate, interest rate or any index with quotations. In this paper, we present a copula-GARCH model and the Monte Carlo simulation method base on the model. We examine the pricing result of three kinds of bivariate options - digital, rainbow and spread option, in many different cases and find that the choosing of pricing copula may cause a significant difference of the pricing result. Furthermore, the pricing result of rainbow option is most sensitive to the choosing of copulas in the three kinds of bivariate options.摘要............................................................ ibstract........................................................ ii Introduction.................................................. 1 Literature Review............................................. 3 Bivariate Options............................................. 7 Methodology................................................... 9.1 GARCH Model................................................. 9.2 Copulas Functions........................................... 11.3 Monte Carlo Simulation...................................... 13 Result Analysis............................................... 14 6 Conclusion.................................................... 37eferences...................................................... 39ppendix A. Common Bivariate Copula Functions................... 43ppendix B. Kendall’s tau of each Copulas...................... 43ppendix C. Inverse Function of Cu1() of each Copula Models..... 44application/pdf1263556 bytesapplication/pdfen-US二元選擇權多資產選擇權相依結構Bivariate OptionCopulaDependent StructureGARCHMonte Carlo相依結構對多資產選擇權定價之模擬分析Bivariate Options Pricing with Copula-GARCH Model- Simulation Analysisthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/182739/1/ntu-98-R96723059-1.pdf