2015-01-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/678751摘要:長久以來,在學界和業界的研究員們,不斷的尋求 直接能隙的四族材料,以做為光子元件,並與以矽為基材的電子元件整合。 本子計畫的主要目標是,發展直接能隙四族材料,做為可應用的光子元件。在過去幾年,我們完成並示範不同的直接能隙四族光子元件。 有二項研究成果,在文獻中,是俱有指標性的,分別是:(a) 直接能隙之鍺錫磊晶材料 (最高錫濃度的鍺錫合金),(b) 四族紅外發光二極體 (鍺錫) 。光偵測器光子元件,並在遠到中紅外波段,在文獻報導中,俱有最高的響應率 (Appl. Phys. Lett. 102, 182106 (2013), Editor’s Picks on Semiconductor Research from Applied Physics Letters (2014).)。以上研究成果可做為四族光子元件的一個里程碑。下一階段,我們發展面型結搆,並探討 與矽為基材的電子元件整合的方式。 研究的題目分別是:(a) 為成長低缺陷密度磊晶材料,尋找材料結構及成長之最優化參數、(b) 新型高效率光電元件之設計與製程、(c) 用於影像辨識系統之二極體陣列結構。本子計畫之成功將,影嚮以四族為基礎的光電領域,並產生以矽為基礎的光電元件整合的元件架構。<br> Abstract: Direct-bandgap group IV materials have long been sought in academia and industry for the implementation of photonic devices. This sub-project works on the solution of fundamental issues needed to enable practical applications. Our recent efforts have demonstrated: (a) direct-bandgap group IV materials of GeSn with highest Sn content, (b) the first state-of-the-art GeSn-based light-emitting diodes with direct-gap emission, and photodetector with best responsivity in the mid-infrared region. (Appl. Phys. Lett. 102, 182106 (2013), Editor’s Picks on Semiconductor Research from Applied Physics Letters (2014).) These researches are major milestones towards the realization of advanced group-IV-based photonic devices. In the next stage, we move to another horizon focusing on: (a) structure design and material growth aimed at the minimization of defects, (b) new type of photonic devices (planar devices) for high efficiency, and (c) diode array for image sensing system (focal plane detection system). The success of this program will have important implications for the photonic community and would enable the monolithic integration of optical and Si-based electronic devices in a single chip which is desired for opto-electronic.直接能隙四族材料鍺錫發光二極體光偵測器direct bandgap group IV materialsgermanium tinlight-emitting diodesand detector優勢重點&#63924;域拔尖計畫【子計畫3-發展高效能&#63805;電子科技於氧化物與半導體&#63842;質界面之前瞻研究】