指導教授:張瑞峰臺灣大學:資訊工程學研究所賴韋達LAI, WEI-DAWEI-DALAI2014-11-262018-07-052014-11-262018-07-052014http://ntur.lib.ntu.edu.tw//handle/246246/261455在癌症的分期上,縱膈腔淋巴結之分布及型態的評估非常重要,而胸腔電腦斷層掃描則是臨床上檢測的主要工具。在現今的檢測流程中,為了從患者的電腦斷層掃描中找出可能異常的腫大淋巴結,放射科醫生需要檢查每張斷層掃描影像。為了輔助醫生檢測並減少所耗的時間和錯誤標記,在本篇研究中,我們提出一個在胸腔電腦斷層攝影上全自動偵測腫大的縱膈腔淋巴結之系統。首先,我們利用三維分水嶺切割將電腦斷層掃描分成許多的三維區域。接著,利用兩個斑點偵測器在二維切片上偵測可疑的斑點狀區域,再經由淋巴結在電腦斷層掃描影像上的大小、密度以及藉由切割出淋巴結於解剖學上周遭的器官,例如氣管、主動脈弓來過濾不可能為淋巴結的可疑區域,並且將可疑的斑點狀區域以二維可疑點表示。最後,將三維區域與二維的可疑點對應並過濾後,獲得了一組可能為淋巴結的三維區域,再對這些區域取出幾何形狀、亮度的統計資訊以及亮度之直方圖等特徵資訊來訓練分類器,移除偽陽性之偵測。我們使用了25個對比增強的電腦斷層攝影影像來評估提出的系統,其中有77個被標記的腫大淋巴結。根據實驗的結果,我們提出的系統達到100%、90.90%、80.51%、70.12%以及61.00%的敏感性,其中分別對應每組影像平均有15.12、11.2、8.32、6.16以及3.76個偽陽性之偵測。在臨床上,我們提出的系統可以達到100%的敏感性,這帶給醫生更可靠的建議。The assessment of involvement of mediastinal lymph nodes is an important evaluation criterion in cancer staging with computed tomography (CT) as the imaging tool. In the clinical workflow, radiologists need to examine all CT slices to detect abnormal enlarge lymph nodes. In this study, a fully automatic computer-aided detection system was proposed to detect mediastinal lymph nodes. With the assistance of the proposed system, the examination time and missed lymph nodes can be reduced. First, a mediastinal volume of interest (VOI) was extracted to restrict the possible locations of lymph nodes. Second, the 3-D watershed transform was performed to obtained morphology information. Third, two blob detectors were combined to identify suspicious regions. Finally, quantitative features were extracted from the overlapped regions in the 2-D suspicious point and 3-D suspicious region and combined in a classifier to discriminate the real lymph nodes from other tissues. The proposed system achieved the sensitivities of 100%, 90.90%, 80.51%, 70.12%, and 61.00% with 15.12, 11.2, 8.32, 6.16 and 3.76 false positives per volume, respectively. In the clinical use, the sensitivities of 100% achieved by our proposed system can provide more reliable recommendations to radiologists.口試委員審定書 i 致謝 ii 摘要 iii Abstract iv Table of Contents v List of Figures vi List of Tables x Chapter 1 Introduction 1 Chapter 2 Materials 4 Chapter 3 Computer-aided lymph node detection 5 3.1 Mediastina VOI locating 7 3.2 3-D Suspicious Region Extraction 11 3.3 Blob-like Map Construction 14 3.4 2-D Suspicious Point Extraction 17 3.4.1 Intensity 17 3.4.2 Location 18 3.4.2.1 Airway Tree Segmentation 18 3.4.2.2 Aortic Arch Segmentation 20 3.4.3 Bounding box 27 3.5 Lymph Node Candidate Determination 29 3.6 Classification on Lymph Node Candidates 31 3.6.1 Morphology 31 3.6.2 Statistic 33 3.6.3 Histogram 33 Chapter 4 Experimental Results and Discussion 34 4.1 Evaluation Methodology 34 4.2 Results 35 4.3 Discussion 45 Chapter 5 Conclusion and Future Work 46 References 472796563 bytesapplication/pdf論文使用權限:不同意授權胸腔電腦斷層攝影淋巴結偵測癌症分期尺度不變特徵轉換最大穩定極值區域[SDGs]SDG3電腦斷層攝影之使用三維分水嶺自動偵測縱膈腔淋巴結電腦輔助系統Automatic Mediastinal Lymph Node Computer-aided Detection System using 3D watershed-based segmentation on Chest CTthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/261455/1/ntu-103-R01922109-1.pdf