2008-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/679756摘要:近十&#63886;&#63789;,受&#64023;於微&#63756;米科技的發展,生物感測器的研發已有重大的進展。其中,微懸臂&#63866;感測器由於對於微小質&#63870;&#63923;敏&#64001;極高,無傳統螢光標示檢驗法的毒性,且可&#63965;用微機電製程做成微小陣&#63900;,同時進&#64008;多向檢測,實為一非常具有潛&#63882;的生物感測器。 免疫分析的原&#63972;為偵測因專一性結合的生物分子所產生的物&#63972;、化學、光學或電學的訊號。傳統微懸臂&#63866;生物感測器的原&#63972;在於&#63870;測生物分子結合在&#63866;表面時,因表面應&#63882;而導致的&#63866;彎曲變形。由於生物分子結合在感測器表面後會緩慢產生構形變化(conformation change),導致整個&#63870;測時間長達&#63849;小時,使得在即時&#63870;測的需求上,遠&#63847;如其他的感測器(如表面電漿共振感測器及石英微天平共振感測器,&#63789;得迅速。相對於傳統的變形&#63870;測,共振式微懸臂&#63866;生物感測器則基於頻&#63841;&#63870;測。此種感測器,&#63847;但具有即時偵測的優點,且因為可以激發在高模態下工作,對於微小質&#63870;的解析&#64001;可高達100ng(1ng=10 的-9 次方克)以上。然而一般生物感測器多置於生物&#63946;道內,微懸臂&#63866;在 振動時,容&#63968;受到周圍&#63946;體黏滯性、虛擬質&#63870;、&#63946;道壁等多重影響,而使頻&#63841;&#63870;測品質下&#64009;。&#63860;將&#63946;道置入在內的乾式微懸臂&#63866;,讓微懸臂&#63866;在空氣或真空中振動,應可大幅改善&#63870;測品質及&#64029;&#64001;。 計畫主持人基於過去三&#63886;主持的國科會"巨分子&#63882;學及其在微感測器之應用"之&#63756;米國家型科技計畫,所&#63823;積的懸臂&#63866;感測器的製造、分析、應用之經驗,擬提出一個三&#63886;期計畫,借助台大&#63756;米微機電系統研究中心及國家&#63756;米元件實驗室既有之微機電製程能&#63870;與設備,改&#63868;一般共振式微懸臂&#63866;,並進一步針對新型之乾式內建微&#63946;道微懸臂&#63866;質&#63870;感測器進&#64008;研發與製造,同時整合台大應&#63882;所之&#63817;射&#64038;卜&#63826;光學振動&#63870;測儀(MEMS-AVID),&#63870;測&#63847;同生物分子結合在&#63866;表面時,所導致的振動頻&#63841;之改變,以用於生物免疫分析。此外,為掌握設計與相關&#63851;&#63849;&#63870;測,亦將建&#63991;此一感測器的&#63972;&#63809;分析及&#63849;值模擬模式。運用微機電製程技術、&#63972;&#63809;分析、&#63849;值模擬與相關實驗&#63870;測技術,本研究將深入&#63930;解微懸臂&#63866;生物感測器之&#63882;學機制,並據之得到微懸臂&#63866;生物感測器的最佳化設計。<br> Abstract: The detection of bio-molecules has made a great progress in the recent decade due to the rapid development of nanotechnology. MCB (Micro-cantilever beam sensor) is one of the high resolution sensors developed for immunoassays and can be fabricated in array form for simultaneous detection of multiple targets. The traditional MCB measures the static mechanical bending of the beam tip, due to the surface stress induced by the specific binding of immobilized ligand on the beam surface and analyte in the fluid. However the conformation change of ligand-analyte complex causes the deformation process to last as long as a few hours. The fact renders the traditional MCB less competitive than other real time measuring devices, such as SPR (Surface Plasmon Resonance sensor), and QCM (Quartz Crystal Microbalance sensor). In contrast, the resonant MCB measures the resonance frequency shift due to the added mass of bound analyte and can provide the real time measurement. Moreover, mass as small as 100 ng can be detected using higher resonance modes.However, such a MCB device is conventionally immersed in the fluid and hence suffers from the viscous damping and virtual mass from fluid, which degrades the measurement resolution. The measurement quality and accuracy can be significantly improved if the micro-channel is built in the cantilever beam so that the beam vibrates in air. Based on our previous experience and technique in fabricating micro-cantilever beam sensor, a three-year project is proposed to improve the conventional resonant MCB and further develop a new dry type cantilever beam sensor with built-in fluid micro-channel. Fabrication of MCB will be carried out using the current techniques in the NTU NEMS center and NDL,including photolithography, E-beam deposition, dry etching, and anodic bonding. A microscopic Laser Doppler vibrometer (MEMS-AVID) will be set up to monitor and measure the resonant frequency shift and magnitude of vibration. In addition, 3-D and full time scale numerical simulations will be performed and compared to experiments. With the integration of MEMS fabrication, theoretical and numerical analyses, and measurement techniques,the research will provide a deeper understanding of the mechanics mechanism of MCB sensors, based on which an optimal design can be achieved.微懸梁感測器共振微懸臂樑感測器&#63817射&#64038卜&#63826光學振動&#63870測儀Micro-cantilever beam sensorresonant MCBMEMS-AVID高精度共振微懸臂樑感測器之研發(國科會)