李源弘臺灣大學:材料科學與工程學研究所蔡宜霖Tsai, Yi-LinYi-LinTsai2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/55334本研究的目的主要在探討藉由矽與石墨埋入經由熱裂解所形成之基質中,以形成複合物的方式,來取代使用碳系材料做為鋰電池負極材料。本實驗所採用的材料分別為球形石墨、矽,藉由酚酫樹脂於高溫中裂解成非結晶碳,在石墨表面上形成碳層被覆,穩定石墨的層狀結構,同時對矽之體積改變有緩衝效應,複合物於鋰離子二次電池充放電過程中,不僅具有高電容,當球形石墨酚酫樹脂含量高達45 wt%與矽含量10wt%,第一次充電容量高達794 mA h /g ,增強了鋰離子電池的效能。在添加20wt% TiN於複合物後,其電池更可表現出較高之庫倫效率,降低不可逆電容量,對於維持電容量有所幫助,經過七圈充放電後仍有443mAh/g之可逆電容量。 經過DTA、Raman、SEM與XPS分析,發現球形石墨經過1100°C的高溫熱處理後,由於酚酫樹脂於高溫中發生裂解成碳,於石墨表面形成ㄧ非晶質碳,使得石墨化度降低,而且在顆粒與顆粒之間有凝聚的現象,矽晶粒分別散佈於複合物中,利用XRD來探討複合物充放電後,晶格上之變化,以此瞭解複合物整體之變化。The purpose of this study focusd on the impact on silicon and graphite embedded in amorphous carbon pyrolyzing from phenolic resin and formed graphite/silicon composites to replace carbonaceous materials as anode for Li-ion battery. The ingredients of composites are graphite, silicon and amorphous carbon caused by heat process. Amorphous carbon pyrolyzed from phenolic resin functions not only surface modification but also an elastic network which prevents active particle-particle interactions and holds silicon steadfastly. The electrochemical characterization of the composites with different amounts of phenolic resin was investigated. The amount of ingredients is the key point in composite and results have been found out that more capacity obtains with 45 wt% phenolic resin contained in composite and amount of silicon cannot be exceeded 10wt%, or the capacity will decay too fast to use commercially. We also added TiN to enhance the conductivity because silicon is one type of semiconductor. 20wt% of TiN additive enhanced the cyclic performance and coulombic efficiency. The capacity retained about 443 mAh/g after 7 cycles. Depending on XRD, Raman, and XPS analysis, more amorphous carbon decreased the graphitization degree and increased amount of rhombohedral structures in graphite which contributed to decreasing irreversible capacity.摘要 I Abstract II 目錄 III 圖索引 VI 表索引 XI 第一章緒論 1 1-1 前言 1 1-2 鋰離子電池運作原理 3 1-3 研究動機 6 第二章 理論基礎與文獻回顧 9 2-1 鋰離子二次電池之組成 9 2-1-1 負極材料 9 2-1-2 正極材料 21 2-1-3 隔離膜 23 2-1-4 電解液 23 2-2 鋰離子於負極中之反應機制 24 2-2-1 表面特性及第一次不可逆之現象 24 2-2-2 鋰離子於碳材中之反應 27 2-2-3 鋰離子於矽中之反應 31 2-3 複合負極材料之製備方法 34 2-4 石墨型態與導電度之關係 38 第三章 實驗方法與步驟 43 3-1 實驗儀器與分析設備 43 3-2 實驗材料 44 3-2-1 原料來源 44 3-2-2 碳材被覆之石墨/矽複合物的製備 44 3-3 鋰離子二次電池電極材料塗佈與電池組裝 47 3-3-1 電極塗佈 47 3-3-2 電池組裝 47 3-4 複合物粉末鑑定分析方法 50 3-4-1 熱差分析(DTA) 50 3-4-2 場發射掃描式電子顯微鏡分析(SEM) 50 3-4-3 X-ray 繞射分析(XRD) 50 3-4-4 拉曼光譜分析(Raman) 50 3-4-5 粉末粒徑分析 51 3-4-6 電池性能評估 3-4-7 化學分析影像能譜儀(XPS) 51 第四章 結果與討論 52 4-1 複合物中各成分含量之研究 52 4-1-1 XRD繞射分析 52 4-1-2 SEM微結構之觀察 59 4-1-3 粒徑分佈分析 68 4-1-4 BET比表面積分析 69 4-1-5 DTA測試分析 71 4-1-6 拉曼(Raman)光譜分析 73 4-1-7 XPS分析 76 4-1-8鋰離子二次電池效能之探討 78 4-2 複合物中添加TiN之研究 90 4-2-1 XRD繞射分析 90 4-2-2 SEM微結構之觀察 93 4-2-3 XPS分析 98 4-2-4 鋰離子二次電池效能之探討 100 第五章 結論 106 參考文獻 107en-US酚酫樹脂球形石墨熱裂解鋰離子二次電池phenolic resinsiliconnatural graphiteLi-ion battery以酚醛樹脂被覆於矽/石墨複合物應 用於鋰電池陽極材料之研究The Study of Phenolic Resin-coated Silicon/graphite Composites as Anode Materials for Li-ion Batterythesis