吳賴雲Chung, Lap-Loi;Wu, Lai-Yun臺灣大學:土木工程學研究所張宴維Chang, Yen-WeiYen-WeiChang2010-06-302018-07-092010-06-302018-07-092008U0001-1707200800051000http://ntur.lib.ntu.edu.tw//handle/246246/1876471999年集集大地震造成台灣中小學校舍嚴重損毀,因此校舍之耐震評估與補強的工作刻不容緩,故而提出於隔間磚牆增設複合柱補強之工法。增設之複合柱分為兩部分,配以橫向鋼筋,於兩側夾住隔間磚牆。增設之複合柱除對校舍耐震容量有所貢獻外,並可降低隔間磚牆之有效寬度,同時增加隔間磚牆之面外強度及承載能力。隔間磚牆增設複合柱之補強工程不必拆除門窗,因而省工、省時、省錢又環保,且對原有校舍功能之衝擊可降至最低。在靜力作用下之複合柱的補強效益,已透過實驗室之反復載重試驗與校舍現地之單向推垮試驗加以驗證。研究接續之前試驗,於國家地震工程研究中心進行校舍隔間磚牆增設複合柱之振動台試驗,以探討結構增設複合柱之動態反應及補強效果。振動台試驗共有四座試體,皆為單層雙向各一跨含樓板之足尺寸鋼筋混凝土構架,分別為鋼筋混凝土空構架、鋼筋混凝土構架內填先砌式1B磚牆、鋼筋混凝土構架內填先砌式1B磚牆震後增設複合柱修復及鋼筋混凝土構架內填後砌式1B磚牆震前增設複合柱補強。此外,使用初步評估、斷面分析、簡易推垮分析、ETABS非線性推垮分析及容量震譜法之耐震評估方法,評估校舍隔間磚牆增設複合柱補強之耐震能力。合柱於震後修復提供基底剪力約為141.9 kN,震後修復構架之最大基底剪力與標準構架相當;複合柱於震前補強提供基底剪力約為76.5 kN,震前補強構架之最大基底剪力為標準構架1.33倍。經由振動台試驗及耐震評估之結果,進一步確認複合柱之補強效益,故於校舍隔間磚牆增設複合柱是一簡單、經濟且有效之補強方式。Thousands of buildings were damaged by the devastating 921 Chi-Chi earthquake. School buildings are the most vulnerable category in public buildings and the retrofit of existing school buildings becomes a stringent issue. Therefore, the retrofit of school buildings by adding composite columns onto the partition brick walls was proposed. The said column was divided into two parts and was added to the two sides of the partition brick wall. The two parts were integrated together with stirrups penetrating through the wall. The composite column itself contributed to the seismic capacity of the school building. Moreover, the gravity-bearing capacity of the partition brick wall was enhanced since the effective width of the partition brick wall was reduced in the presence of composite column. For the retrofit onto the partition brick walls, no windows or doors along the corridor have to be removed so that the proposed method is cost effective and the impact on the functions of the buildings is minimized. The proposed method has been successfully verified statically and experimentally through cyclic loading tests and in situ monotonic pushover tests.n this paper, the proposed method was verified dynamically and experimentally through shaking table tests. Four full-scale one-story reinforced concrete models with single span in both directions were designed and fabricated. The first model was a pure frame. As a bench mark model, the second model was a pure frame with two pre-layered brick walls. After the bench mark model was damaged after shaking table tests, it was repaired by augmenting composite column onto a brick wall and assigned as the third model. The fourth model was a retrofitted one. It was a pure frame with a post-layered brick wall. Before shaking table tests, it was retrofitted by augmenting a composite column onto the brick wall. In addition to shaking table tests, the seismic performance of the four models was assessed by preliminary evaluation, sectional analysis, simplified nonlinear pushover, ETABS nonlinear pushover and capacity spectrum method.ccording to the experimental results, the maximum base shear of the model with seismic repair was recovered from the damage to 100% of that of the bench mark model. The maximum base shear of the model with seismic retrofit was 133% of that of the bench mark model. The feasibility of the proposed retrofit method was successfully verified through shaking table tests and seismic evaluation methods. The proposed retrofit method is simple and cost effective to upgrade the seismic performance of school buildings with limited resources.口試委員會審定書 i謝 ii文摘要 iii文摘要 iv錄 vi目錄 xii片目錄 xxii目錄 xxiii一章 緒論 1.1研究動機與目的 1.2文獻回顧 1.2.1耐震能力評估 2.2.2耐震能力提升之技術 2.3複合柱試驗回顧 3.3.1隔間磚牆增設複合柱補強效益之推垮分析及試驗驗證 3.3.2隔間磚牆增設複合柱補強試體靜態單向側推現地試驗 4.4校舍隔間磚牆增設複合柱補強之振動台試驗 4.5研究範圍與方法 4.6本文內容 5二章 試驗規劃介紹與材料性質 7.1構架設計 7.1.1 鋼筋混凝土空構架PF 7.1.2 鋼筋混凝土構架內填先砌式1B磚牆B2F 8.1.3 鋼筋混凝土構架內填先砌式1B磚牆增設複合柱修復B2F-AC 8.1.4 鋼筋混凝土構架內填後砌式1B磚牆增設複合柱補強A2F-BC 8.2複合柱設計 8.3試體製作 9.4材料性質 10.5量測系統 11.5.1 RC構架上的儀器配置 11.5.2磚牆及複合柱上的量測儀器配置 12.5.2.1 B2F磚牆上的量測儀器配置 13.5.2.2 B2F-AC磚牆及複合柱上的量測儀器配置 13.5.2.3 A2F-BC磚牆及複合柱上的量測儀器配置 13.6試驗流程 13.6.1加載震波 14.6.2試驗順序 14.6.2.1 PF試驗流程 14.6.2.2 B2F試驗流程 15.6.2.3 B2F-AC試驗流程 15.6.2.4 A2F-BC試驗流程 16.7試體其他設施 17.7.1防塌裝置 17.7.2吊錘 17.8試體重量概估 17三章 理論分析與推導 47.1初步評估 47.1.1基本假設 47.1.2構材之極限剪力強度 48.1.3計算試體基底剪力 48.1.4破壞地表加速度 49.2斷面分析 50.2.1手算柱桿件抗彎強度對應之剪力 50.2.1.1基本假設 50.2.1.2一般柱桿件抗彎強度所對應之剪力 50.2.1.3複合柱桿件抗彎強度所對應之剪力 52.2.2手算柱桿件之斷面抗剪強度及評估校舍之基底剪力 52.2.3 Response-2000 53.3詳細評估 53.3.1 RC柱側向載重與位移之非線性曲線 54.3.1.1撓剪破壞側向載重與位移曲線 54.3.1.2剪力破壞側向載重位移曲線 55.3.1.3複合柱側向載重與位移之非線性曲線 56.3.2簡易推垮分析 56.3.3 RC柱之塑鉸設定 57.3.3.1撓曲塑鉸參數 58.3.3.2剪力塑鉸參數 58.3.4 ETABS非線性推垮分析 58.3.5容量震譜法分析 60四章 試驗結果與量測觀察 68.1試驗觀察 68.1.1 PF 68.1.2 B2F 68.1.3 B2F-AC 69.1.3.1 150gal 69.1.3.2 600gal 69.1.3.3 1200gal 70.1.3.4 1800gal 70.1.3.5 Sine wave 2.3Hz-1.5Hz 600gal 70.1.3.6 Sine wave 1.5Hz-1Hz 600gal 70.1.4 A2F-BC 71.1.4.1 150gal 71.1.4.2 600gal 71.1.4.3 1200gal 71.1.4.4 1800gal 72.1.4.5 2400gal 72.1.4.6 3000gal 72.1.4.7 Sine wave 2.3Hz-1.5Hz 600gal 72.2試驗結果 73.2.1 PF 73.2.1.1基礎板之量測加速度 74.2.1.2基底剪力與時間關係圖 74.2.1.3相對位移與時間關係圖 75.2.1.4基底剪力與相對位移關係圖 76.2.2 B2F 77.2.2.1基礎板之量測加速度 77.2.2.2基底剪力與時間關係圖 78.2.2.3相對位移與時間關係圖 79.2.2.4基底剪力與相對位移關係圖 80.2.3 B2F-AC 80.2.3.1基礎板之量測加速度 80.2.3.2基底剪力與時間關係圖 81.2.3.3相對位移與時間關係圖 82.2.3.4基底剪力與相對位移關係圖 84.2.4 A2F-BC 84.2.4.1基礎板之量測加速度 84.2.4.2基底剪力與時間關係圖 85.2.4.3相對位移與時間關係圖 86.2.4.4基底剪力與相對位移關係圖 88.3四座試體試驗結果比較 88五章 數據分析結果與試驗比較 191.1初步評估 192.1.1 PF之分析結果 192.1.2 B2F之分析結果 192.1.3 B2F-AC之分析結果 192.1.4 A2F-BC之分析結果 193.2斷面分析 194.2.1 PF之分析結果 194.2.2 B2F之分析結果 194.2.3 B2F-AC之分析結果 195.2.4 A2F-BC之分析結果 196.3 Response-2000 196.3.1一般柱 196.3.2複合柱 196.3.3分析結果 196.4簡易及ETABS非線性推垮分析 197.4.1 PF和B2F 197.4.2 B2F-AC和A2F-BC 198.5理論分析結果與試驗比較 200.5.1 PF 200.5.2 B2F 201.5.3 B2F-AC 202.5.4 A2F-BC 203六章 結論與建議 225考文獻 228錄一 23016940481 bytesapplication/pdfen-US耐震補強;複合住;鋼筋混凝土;校舍;隔間磚牆;振動台試驗seismic retrofit;composite column;reinforced concrete;school buildings;partition brick wall;shaking table test校舍隔間磚牆增設複合柱補強之二維振動台耐震試驗研究Study of Two Dimensional Shaking Table Experiment on Retrofit of School Buildings by Augmented Partition Brick Walls with Composite Columnthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/187647/1/ntu-97-R95521228-1.pdf