劉致為臺灣大學:電子工程學研究所林君平Lin, Chun-PingChun-PingLin2007-11-272018-07-102007-11-272018-07-102007http://ntur.lib.ntu.edu.tw//handle/246246/57720在本論文中,我們將介紹幾種用於雙功率放大器間的隔離技術,再者將介紹經由外加雙軸機械應力而造成矽鍺異質接面電晶體電路的遷移率增加效應還有外加應力時所使用的設備及機構,最後我們將使用可調整式的匹配電路來解決因為外加應力時由於直流電流增加所造成的阻抗偏移效應。對於雙功率放大器隔離度設計而言,其第一次的雷射切割後等效的耦合效應量為-27.2 dB、第二次雷射切割後為-29.25 dB、其只開啟上部功率放大器、上下部同時開啟及下部功率放大器大於上部10dBm時的第一次的雷射切割後EVM分別為:11.4 dBm、8.9 dBm、及7.8 dBm,而第二次的雷射切割後EVM分別為:15 dBm、13.9 dBm及9.8 dBm。其只開啟上半部功率放大器時,18.6 dB的線性增益、25.3 dBm的1dB壓縮點功率及16.7 %的壓縮點增加效益。在外加機械應力設計方面雖然在量測結果方面沒有很理想,但是阻抗偏移效應也提供了將來設計方面的一些方向,最後希望利用可調整式匹配電路架構用以解決阻抗偏移效應。In this thesis, we will introduce several isolation technologies for dual power amplifiers, then we will introduce the mobility increase effect by applying external biaxial mechanical strained HBT power amplifier circuit and the strain mechanism and setup. Finally we use the tunable matching network to solve the impedance shift effect due to the increase dc current. For the isolation of dual power amplifiers, the amount of equivalent coupling effect at 2.45GHz before laser cut is -24.7dB, first laser cut is -27.2dB and second laser cut is -29.25dB. The EVM at 3% criterion after first laser cut of standalone condition is 11.4 dBm, equal power is 8.9 dBm and 10dB interference from down-PA is 7.8 dBm. After second laser cut of standalone is 15 dBm, equal power is 13.9 dBm and 10dB interference from down-PA is 9.8 dBm. The small signal gain, P1dB, and PAE at P1dB are 18.6dB, 25.3dBm and 16.7%, respectively.Chapter 1 Introduction 1.1 Background and Motivation 1 1.2 Motivation 3 1.3 Thises Outline 4 Chapter 2 Isolation Techniques and Improvement of Gain Expansion for Dual Power Amplifiers 2.1 Introduction 6 2.2 Design of the 802.11n Power Amplifier 7 2.2.1 Circuit Design 7 2.2.2 Bias Circuit with Temperature Compensation 8 2.2.3 Matching Network Design 9 2.2.4 λ/4 Transmission Line 11 2.2.5 Circuit Layout and Isolation Technology 12 2.2.6 Wire Bonding Diagram and complete photo of PA Module15 2.2.7 Improvement of Gain Expansion 16 2.3 Measurement Results 18 2.3.1 CW Measurement Results of a single PA 18 2.3.2 Small Signal Coupling Effects on S-parameter 21 2.3.3 Large Signal coupling on EVM 25 2.3.4 Conclusion 27 References 29 Chapter 3 2.45GHz WLAN SiGe Power Amplifier With Strained Technology and Temperature Compensation 3.1 Introduction 30 3.2 Design of the Power Amplifier 31 3.2.1 Circuit Design Flow 32 3.2.2 Diagram of Circuit Layout 33 3.3 Mechanically Strained of SiGe HBT 34 3.3.1 Theory of Strained SiGe HBTs 36 3.4 Simulation for Strained SiGe Power Amplifier 39 3.5 Measurement Method and Measurement results 42 3.5.1 Measurement Consideration 43 3.5.2 Measurement Results 43 3.6 Conclusion 48 Reference 49 Chapter 4 2.45GHz WLAN SiGe Power Amplifier with Strained Technology and Tunable Matching Network with Varactor 4.1 Introduction 50 4.2 Circuit Design 50 4.2.1 Design of the Power Amplifier 50 4.2.2 Design of the Varactor 53 4.2.3 Diagram of Circuit Layout 54 4.3 Simulation Results 55 4.4 Measurement Method and Measurement Results 59 4.5 Conclusion 60 Chapter 5 Summary and Future Work 5.1 Summary 61 5.2 Future Work 621199142 bytesapplication/pdfen-US機械應力功率放大器矽鍺mechaincal strainpower amplifierSiGe隔離技術及外加機械應力效應矽鍺功率放大器Isolation and Strain Techniques for SiGe Power Amplifiersthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/57720/1/ntu-96-R94943121-1.pdf