2011-01-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/692319摘要:本計畫將利用鈣鋁酸鹽玻璃取代一般熱電元件的高溫熱板,並在鈣鋁酸鹽玻璃背面成長絕緣及熱吸收好的導電鑭鍶錳氧薄膜(La&not;0.3Sr0.7MnO3 thin film, LSMO)。我們將量測不同LSMO成長條件與厚度下之光(含紅外線頻段)穿透與反射光譜,以及其對應之輸出功率p與轉換效率改變,另對於不同之金屬/半導體接面電阻對應之p與改變,輔以理論分析研究,亦可獲得最佳之封裝條件。預期在最佳化條件下,與矽太陽電池結合後,在高低溫差為10C時,可增加矽太陽電池1倍以上的整體功率輸出。結果將應用於“熱電元件電力分析模組”與“太陽能與熱電發電行動平台”原型系統之開發。<br> Abstract: In this study, high-absorption conducting La&not;0.3Sr0.7MnO3 (LSMO) thin films will be grown on CaAlO&not;3 glass substrates using rf sputter to replace the hot plates commonly used in the thermoelectric devices. We will measure the spectra of reflection and transmittance for LSMO films with different thicknesses and growth conditions, and the corresponding output powers or transfer coefficients of the thermoelectric devices. We also measure the output powers and transfer coefficients of the thermoelectric devices with different metal/semiconductor interface resistance. The results will be theoretically analyzed to achieve the optimum fabrication for package of thermoelectric devices. It is predicted that more 100-percent increase of the total output power for an associated Silicon Solar Cell can be obtain using these optimum processes with a temperature difference of 10oC. The results will be applied on the developments of prototypes of “thermoelectric electricity analysis system” and “solar-cell and thermoelectric mobile-module system”熱電元件轉換效率鑭鍶錳氧薄膜金屬/半導體接面矽太陽電池thermoelectric devicestransfer coefficientLa&not0.3Sr0.7MnO3 thin filmmetal/semiconductor interfacerf sputterSilicon Solar Cell高熱吸收熱電元件封裝技術之改善研究---應用於太陽熱能發電與矽太陽能電池元件結合之應用(II)