江文章臺灣大學:食品科技研究所余嚴尊Yu, Yen-TsunYen-TsunYu2007-11-272018-06-292007-11-272018-06-292005http://ntur.lib.ntu.edu.tw//handle/246246/56290本研究係選用國產台中選育四號品系糙薏仁為原料,進行糙薏仁的活性區分物對倉鼠脂質代謝的相關研究。首先,在探討糙薏仁攝取量對倉鼠降血脂作用的影響,結果顯示以20及40%的糙薏仁取代高脂飼料 (10% corn oil + 1.0% cholesterol)餵食倉鼠,四週後可降低倉鼠血漿脂質濃度,而八週後除可降低倉鼠血漿脂質外,亦會減少肝臟TC與TG含量並促進糞便脂質的排出。 再者,在探討糙薏仁的活性區分物對倉鼠脂質代謝的影響,結果顯示(ㄧ)糙薏仁經100℃、30 分鐘的熱水萃取區分,在20及40%的糙薏仁熱水萃取物(ABW)與20及50%的糙薏仁熱水萃渣(ABR)取代高脂飼料(10% corn oil + 0.25% cholesterol),均對倉鼠具有降血脂作用,故無法藉由熱水萃取區分方式區分出糙薏仁降血脂作用的活性成分所在。(二)糙薏仁以甲醇萃取並再以正己烷、乙酸乙酯及正丁醇等不同極性溶劑進行分配區分,甲醇萃取物(AM)的萃取率多寡會影響其抑制膽固醇酯轉移蛋白(cholesteryl ester transfer protein, CETP)活性的能力與降血脂作用的效果。在體外及動物試驗同時顯示乙酸乙酯層及正丁醇層區分物的抑制CETP活性較甲醇萃取物為強,其IC50分別為55μg /mL及65μg /mL。另,正己烷層區分物(AM-H)或水層區分物(AM-W)或其甲醇萃取渣的水萃物(AMR-W)等三種區分物亦具有降血脂作用,就此推知糙薏仁降血脂作用是因多種不同極性活性成分作用所致。(三)糙薏仁的富含水溶性膳食纖維區分物(ACF)具有降血脂的作用且呈現劑量關係,而其40%酒精次區分之不可溶及可溶區分物(ACF-EI和ACF-ES)亦具降血脂作用但會受理化性質的差異而有所不同。ACF、ACF-EI和ACF-ES 的分子量分別為12.4、14.5和8.7 x 104 Daltons。另外,糙薏仁的75%酒精可溶性區分物(ACE)可提高血漿HDL-C濃度,其作用機制可能為抑制CETP活性,惟其組成分仍有待進一步研究。正己烷萃取區分物(AH)亦具有降血脂的生理機能性。糙薏仁中所含的Campesterol、Stigmasterol及Sitosterol三種植物固醇含量分別為65±10,34±7及445±36 mg/100g。 綜合言之,糙薏仁對倉鼠脂質代謝的活性區分物有其富含水溶性膳食纖維、甲醇、正己烷與75%酒精之可溶性區分物。In this study, we used the Taichung select No.4 dehulled adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) as our experimental material to investigate the dehulled adlay active fractions on the lipid metabolism in hamsters. First, we examined the hypolipidemic effect in hamsters fed high fat diets (10% corn oil + 1.0% cholesterol) that was substituted with different percents of dehulled adlay for 4 or 8 weeks. The results showed that after 4 weeks feeding period, 20 and 40% dehulled adlay substituted high fat diets could lower serum lipids concentration in hamsters. After 8 weeks, we found that 20 and 40% diet groups lowering levels of serum lipids and hepatic TC, TG and also showed increaseing fecal lipids excretion in hamsters. Second, we investigated the dehulled adlay active fractions on the lipid metabolism in hamsters. The results showed that (1) the dehulled adlay extracted by 100℃ water for 30 min to obtain hot water-soluble fraction (ABW) and hot water-insoluble fraction (ABR). As hamsters fed with high fat diets (10% corn oil + 0.25% cholesterol) that were substituted 20, 40% ABW and 20, 50% ABR, showed hypolipidemic effect. So we could not isolate the hypolipidemic active components by means of fractionating dehulled adlay with boiling water extraction. (2) The dehulled adlay extracted by methanol and fractionated by n-hexane, ethyl acetate, 1-butanol and water. The methanol extract (AM) had lipid-lowering effect and reduced the plasma cholesteryl ester transfer protein (CEPT) activity, and that might be related with the ratio of extraction. As compared with AM, the AM-EA and AM-B fractions significantly inhibited the CETP activity in vitro and in vivo. Their IC50 were 55μg /mL and 65μg /mL. Moreover, 3 groups of hamsters were fed with AM-H, AM-W and AMR-W and the results showed different hypolipidemic effects. Therefore, our results demonstrated that the hypolipidemic effect of dehulled adlay was due to various active components. (3) The water-soluble dietary fiber enriched fraction of dehulled adlay (ACF) showed a hypolipidemic effect in hamsters and which was positively correlated with the amount of ACF. The insoluble and soluble fractions (ACF-EI and ACF-ES, respectively) of ACF that prepared by 40% ethanol concentration fractionation also showed hypolipidemic effects and which was influenced with their physicochemical properties. The apparent molecular-weights of ACF-EI and ACF-ES were 14.5 and 8.7 x 104 Daltons, respectively. Furthermore, the adlay 75% alcohol soluble fraction (ACE) could elevated plasma HDL cholesterol concentraction, and the possible hypolipidemic mechanism was due to its inhibitory CETP activity and further investigation about its active composition is needed. The hexane fraction (AH) of dehulled adlay also showed a hypolipidemic effect. The contents of 3 phytosterols, i.e. campesterol, stigmasterol and sitosterol in the dehulled adlay were 65±10, 34±7, 445±36 mg/100g, respectively. In conclusion, we demonstrated that the dehulled adlay active fractions on the lipid metabolism in hamsters were their water-soluble dietary fiber enriched, and methanol, n-hexane and 75% alcohol soluble fractions.甘子能。1986。製茶原理的生化觀。食品工業 17(7):25-37。 伍秀菁、汪若文、林美吟。2001。真空技術與應用。行政院國家科學委員會精密儀器發展中心。新竹。臺灣。 朱建鏞、王文哲、劉興隆、李昱輝、藍啟倩、柯勇。2005。玫瑰花栽培。國立中興大學農業暨自然資源學院農業推廣中心。臺中。臺灣。 行政院農業委員會。2007。臺灣農業統計年報。臺北。臺灣。 吳振鐸。1969。紅茶萎凋原理與槽型萎凋機之改良及利用。臺灣省茶葉改良場報告第44號。 沈仲剛。1993。玫瑰花栽培。園藝世界雜誌社。臺北。臺灣。 阮逸明。1998。臺灣省茶葉改良場改制三十週年(創立九十五年)紀念特刊。臺灣省茶葉改良場。桃園。臺灣。 林登•霍桑(Linden Hawthorne)。2002。玫瑰圖鑑。貓頭鷹出版社。臺北。臺灣。 林馥泉。1956。烏龍茶及包種茶製造學。大同書局。臺北。臺灣。 邱國偉。2006。玫瑰花茶製程之研究。國立臺灣大學食品科技研究所碩士論文。臺北。臺灣。 施明智。2001。食物學原理。藝軒圖書公司。臺北。臺灣。 洪裕翔。2006。黑豆麴之抗致突變性及其作用機制。國立臺灣大學食品科技研究所碩士論文。臺北。臺灣。 埔里多功能花卉處理展售中心事業計畫書。2001。財團法人臺灣大學建築與城鄉研究所發展基金會。臺北。臺灣。 徐錫樑。1998。真空油炸紅蘿蔔脆片之品質與其炸油氧化安定性之硏究。國立臺灣大學食品科技研究所博士論文。臺北。臺灣。 張如華、李敏雄。1994。萎凋溫度與時間對製造碎型包種茶之影響。臺灣茶葉研究彙報 13:81-90。 張思穎。2006。乙醇模式溶液中李子花青素穩定度之研究。國立臺灣大學食品科技研究所碩士論文。臺北。臺灣。 張連發、賴滋漢、盛中德。1997。以紅外線萎凋茶菁製造包種茶之研究。臺灣茶葉研究彙報 16:19-28。 張萬佛。1995。花木綴談。地景企業股份有限公司。臺北。臺灣。 賴慧芳。1998。利用真空浸入法補充果膠酯酶後再預煮處理以提高胡瓜組織之耐煮性。國立臺灣大學農業化學研究所碩士論文。臺北。臺灣。 許乃文。養液中溶氧量對玫瑰花植株生育之影響。國立中興大學園藝學系碩士論文。臺中。臺灣。 陳宜孜。溫度與pH對不同品種山藥抗氧化特性及其儲存性蛋白質dioscorin安定性之影響。靜宜大學食品營養學系碩士論文。臺中。臺灣。 陳英玲。1995。不同茶樹品種多酚酶活性及其在製茶過程中之變化。農特產品加工研討會專刊。臺灣省農業試驗所。台中。臺灣。 陳清泉、尤新輝、程竹青。1997。水質、pH及金屬離子對烏龍茶茶湯色澤及多元酚含量之影響。食品科學24:331-347。 曾秀瓊。1979。花后薔薇。自然科學文化事業公司。臺北。臺灣。 曾建誠。1997。椰子水殺菌過程中非酵素性褐變機制及抑制方法探討。天主教輔仁大學食品營養學系碩士論文。臺北。臺灣。 曾國展。2006。花青素在乙醇溶液中顏色表現之研究。國立臺灣大學食品科技研究所博士論文。臺北。臺灣。 黃勝忠、陳裕星、秦立德。2003。彩色海芋花色組成份之分析。臺中區農業改良場研究彙報 78:23-24。 黃肇家。1985。臺灣的玫瑰花品種及栽培。合歡出版社。臺北。臺灣。 黃瀞萩。2006。玫瑰花浸漬酒製程之探討。國立臺灣大學食品科技研究所碩士論文。臺北。臺灣。 園藝編輯組。2005。四季盆花栽培指南。文國書局。臺南。臺灣。 塚本洋太郎、椙山誠治郎、坂西義洋、脇坂誠、堀四郎。1956。原色薔薇洋蘭図鑑。保育社。大阪。日本。 楊名翔。1996。以模式反應探討烏龍茶香氣的熱形成。大葉工學院食品工程研究所碩士論文。彰化。臺灣。 蔡志賢。2002。包種茶萎凋與攪拌製程中茶菁之生理變化與利用生物電子鼻監測之可行性探討。國立臺灣大學園藝學研究所博士論文。臺北。臺灣。 顏士雲。2006。真空油炸竹筍製程之研究。國立臺灣大學食品科技研究所碩士論文。臺北。臺灣。 严学成。1990。茶树形态结构与品质鉴定。农业出版社。北京。中国。 黄蓉。1990。园林植物开花生理与控制。农业出版社。北京。中国。 Abers JE, Wrolstad RE. 1979. Causative factors of color deterioration in strawberry preserves during processing and storage. J Food Sci 44: 75-81. Acock B, Nichols R. 1979. Effects of sucrose on water relation of cut, senescing, carnation flowers. Ann Bot 44: 221-230. Adams JB. 1972. Changes in the polyphenols of red fruits during processing – the kinetics and mechanism of anthocyanin degradation. Campden Food Pres Res Assoc Tech Bull. Chipping Campden. Gloucestershire. England. Adams JB. 1973a. Colour stability of red fruits. Food Manuf Feb: 19-20,41. Adams JB. 1973b. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyaniding. I. In acidified aqueous solution at 100 ℃. J Sci Food Agric 24: 747-762. Amerine MA, Kunkee RE, Ough CS, Singleton VL, Webb AD. 1980. The technology of wine making. Avi Pub Co. Westport, CN, USA. Amorini AM, Fazzina G, Lazzarino G, Tavazzi B, Di PD, Santucci R, Sinibaldi F, Galvano F, Galvano G. 2001. Activity and mechanism of the antioxidant properties of cyanidin-3-O-β-glucopyranoside. Free Radic Res 35: 953–966. Anderson OM. 2002. Paper presented at the anthocyanin occurrences and analysis: In: Proceedings of the international workshop on anthocyanins: Research and development of anthocyanins, Adelaide, South Australia, April 17–19. Asen S. 1976. Known factors responsible for infinite flower color variations. Acta Hortic 63: 217-223. Asen S, Norris KH, Stewart RN. 1969. Absorption spectra and color of aluminium-cyanidin 3-glucoside complexes as influenced by pH. Phytochem 8: 653-659. Asen S, Stewart RN, Norris KH. 1972. Co-pigmentation of anthocyanins in plant tissues and its effect on color. Phytochem 11: 1139-1144. Baldwin EA. 1990. Exopolygalacturonase elicits ethylene production in tomato. HortScience 25: 779. Bayer E, Egeter H, Fink A, Nether K, Wegmann K. 1966. Complex formation and flower colors. Angew Chem Int Ed Eng 5: 791-798. Berké B, Chèze C, Vercauteren J, Deffieux G. 1998. Bisulfite addition to anthocyanins: revisited structures of colourless adducts. Tetrahedron Lett 39: 5771-5774. Biolley JP, Maurice J, Gert F. 1994. Pigmentation patterns of modern rose mutants throw light on the flavonoid pathway in Rosa X Hybrida. Phytochem 36: 1189-1196 Bordignon-Luiz MT, Gauche C, Gris EF, Falcão LD. 2007. Colour stability of anthocyanins from Isabel grapes (Vitis labrusca L.) in model systems. Lebensm-Wiss Technol 40: 594-599. Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333. Brenes CH, Pozo-Insfran DD, Talcott ST. 2005. Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system. J Agric Food Chem 53: 49-56. Bridle P, Timberlake CF. 1997. Anthocyanins as natural food colours-selected aspects. Food Chem 58: 103-109. Brouillard R. 1981. Origin of the exceptional colour stability of the Zebrina anthocyanin. Phytochem 20: 143-145. Brouillard R. 1982. Chemical structure of anthocyanins. Anthocyanins as Food Colors Academic Press. New York. USA. Brouillard R. 1983. The in vivo expression of anthocyanin colour in plants. Phytochem 22: 1311-1323. Brouillard R, Delaporte B. 1978. Etude par relaxation chimique des equilibres de transfert de proton, d’hydration et de tautomerie prototropique de l’anthocyane majoritaire de Vitis vinifera, la glucoside-3 malvidine. Protons And Ions Involved In Fast Dynamic Phenomena Elsevier scientific publishing company. Amsterdam. Netherlands. Brouillard R, Dubois JE. 1977. Mechanism of the structural transformations of anthocyanins in acidic media. J Am Chem Soc 99: 1359-1364. Brouillard R, Iacobucci GA, Sweeny JG. 1982. Chemistry of anthocyanin pigments. 9. UV-visible spectrophotometric determination of the acidity constants of apigeninidin and three related 3-deoxyflavylium salts. J Am Chem Soc 104: 7585-7590. Cabrita L, Fossen T, Andersen ØM. 2000. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem 68: 101-107. Cemeroğlu B, Velioğlu S, Işık S. 1994. Degradation kinetics of anthocyanins in sour cherry juice and concentrate. J Food Sci 59: 1216-1217. Cevallos-Casals BA, Cisneros-Zevallos L. 2004. Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chem 86: 69-77. Chandler BV, Harper KA.1962. A procedure for absolute identification of anthocyanins-pigments of blackcurrant fruit. Aust J Chem 15: 114-120. Che Man YB, Ammawath W, Rahman RA, Yusof S. 2003. Quality characteristics of refined, bleached and deodorized palm olein and banana chips after deep-fat frying. J Food Agric 83: 395-401. Cheng G, Breen PJ. 1991. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116: 865-869. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. 1998. Tannins and human health: A review. Crit Rev Food Sci Nutr 38: 421-464. Clifford MN. 2000. Anthocyanins - nature, occurrence and dietary burden. J Sci Food Agric 80: 1063-1072. Coorts GD. 1973. Internal metabolic changes in cut flower. HortScience 8:195-198. Cos P, Vanden Berghe D, De Bruyne T, Vlietinck AJ. 2003. Plant substances as antiviral agents: An update (1997–2001). Curr Org Chem 7: 1163–1180. Cos P, De Bruyne T, Hermans N, Apers S, Vanden Berghe D, Vlietinck AJ. 2004. Proanthocyanidins in health care: Current and new trends. Curr Med Chem 11: 1345–1359. Crozier A, Burns J, Aziz AA, Stewart AJ, Rabiasz HS, Jenkins GI, Wards CA, Lean MEJ. 2000. Antioxidant flavonols from fruits, vegetables and beverages: Measurements and bioavailability. 33: 79-88. Daravingas G, Cain RF. 1968. Thermal Degradation of Black Raspberry Anthocyanin Pigments in Model Systems. J Food Sci 33: 138-142. Davies AJ, Mama G. 1993. Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J Agric Food Chem 41: 716-720. Debicki-Pospišil J, Lovrić T, Trinajstić N, Sabljić A. 1983. Anthocyanin degradation in the presence of furfural and 5-hydroxymethylfurfural. J Food Sci 48: 411-416. Del Pilar Buera M, Chirife J, Resnik SL, Lozano RD. 1987. Nonenzymatic Browning in Liquid Model Systems of High Water Activity: Kinetics of Color Changes due to Caramelization of Various Single Sugars. J Food Sci 52: 1059-1062. Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M. 2003. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci 164: 333-340. Erlandson JA, Wrolstad RE. 1972. Degradation of anthocyanins at limited water concentration. J Food Sci 37: 592-595. Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O. 2006. Polyphenols in wild and weedy mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem 54: 4436-4444. Eugster CH , Märki-Fischer E. 1991. The chemistry of rose pigments. Angew Chem Int Ed Engl 30: 654-672. Evans RY, Reid MS. 1986. Control of petal expansion during diurnal opening of roses. Acta Hort 181: 55-63. Evans RY, Reid MS. 1988. Changes in carbohydrates and osmotic potential during rhythmic expansion of rose petals. J Amer Soc Hort Sci 133: 884-888. Fang Z, Zhang M, Sun Y, Sun J. 2007. Polyphenol oxidase from bayberry (Myrica rubra Sieb. et Zucc.) and its role in anthocyanin degradation. Food Chem 103: 268-273 Francis FJ. 1977. Anthocyanins. Current Aspects of Food colorants. CRC press. Cleveland. Ohio. USA. Francis FJ. 1989. Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28: 273-314. Fuleki T, Francis FJ. 1968a. Quatitive methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33: 72-77. Fuleki T, Francis FJ. 1968b. Quatitive methods for anthocyanins. II. Determination of total anthocyanin and degradation index for cranberry juice. J Food Sci 33: 78-83. Galvano F, Fauci LL, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S, Battistini NC, Tavazzi B, Galvano G. 2004. Cyanidins: metabolism and biological properties. J Nutr Biochem 15: 2-11. GarzÓn GA, Wrolstad RE. 2002. Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. J Food Sci 67: 1288-1299. Geissman TA, Jorgenson EC, Harborne JB. 1953. The effect of aluminum chloride on absorption spectra of anthocyanins. Chem Ind Dec: 1389. Gonçalves EM, Pinheiro J, Abreu M, Brandão TRS, Silva CLM. 2007. Modelling the kinetics of peroxidase inactivation, colour and texture changes of pumpkin (Cucurbita maxima L.) during blanching. J Food Eng 81: 693-701. Griesbach H. 1982. Biosynthesis of anthocyanins. Anthocyanins as Food Colors. Academic Press. New York. Griesbach RJ. 1992. Correlation of pH and light intensity on flower color in potted Eustoma grandiflorum Grise. HortScience. 27: 817-818. Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D. 2002. Rose Scent: Genomics Approach to Discovering Novel Floral Fragrance–Related Genes. Plant Cell 14: 2325-2338. Hammond BW. 1982. Changes in amylase activity during rose bud opening. Sci Hort 16: 283-289. Hanks GR, Rees AR. 1983. The response of partly cooled tulips to vacuum infiltration with gibberellins. Sci Hortic 21: 159-172. Harborne JB. 1967. Comparative biochemistry of the flavonoids. Academic Press. London. England. Harborne JB. 1973. Phytochemical Methods. Chapman and Hall Ltd. London. England. Harborne JB. 1979. Variation in and functional significance of phenolic conjugation in plants. Recent Advances In Phytochemistry Vol. 12. Biochemistry Of Plant Phenolics. Plenum Press. New York. USA. Harborne J. 1980. Plant polyphenolics. Encyclopedia of Plant Physiology. Springer Verlag, Berlin Heidelberg . New York. USA. Harborne JB. 1986. The natural distribution in angiosperms of anthocyanins acylated with aliphatic dicarboxylic acids. Phytochem 25: 1887-1894. Harborne JB, Grayer RJ, The anthocyanins. The Flavonoids, Advances in Research Since 1980, Chapman and Hall, London. England. Hagiwara A, Yoshino H, Ichihara T, Kawabe M, Tamano A, Aoki H, Koda T, Nakamura M, Imaida K, Ito N, Shirai T. 2002. Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (phip)-associated colorectal carcinogenesis in rats. J Toxicol Sci 27: 57-68. He YH, Zhou J, Wang YS, Xiao C, Tong Y, Tang JCO, Chan ASC, Lu AP. 2006. Anti-inflammatory and anti-oxidative effects of cherries on Freund' s adjuvant-induced arthritis in rats. Scandinavian Journal of Rheumatology 35: 356-358. Ho LC, Nichols R. 1977. Translocation of 14C-sucrose in relation to changes in carbohydrate content in rose corollas cut at different stages of development. Ann Bot 41: 227-242. Hodge JE. 1953. Dehydrated foods, Chemistry of browning reactions in model systems. J Agric Food Chem 1: 928-943. Hrazdina G. 1971. Reactions of the anthocyanidin-3, 5-diglucosides: Formation of 3, 5-di-(O-β-D-glucosyl)-7-hydroxy coumarin. Phytochem. 10: 1125-1130. Huang HT. 1955. Decolorization of anthocyanins by fungal enzymes. J Agric Food Chem 3: 141-146. Huang HT. 1956. Enzymatic identification of the anthocyanin pigment of blackberry. Nature 177: 39. Iacobucci GA, Sweeny JG. 1983. The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron 39: 3005-3038. Inami O, Tamura I, Kikuzaki H, Nakatani N. 1996. Stability of anthocyanins of Sambucus canadensis and Sambucus nigra. J Agric Food Chem 44: 3090-3096. Jackman RL, Yada RY, Tung MA , Speers RA. 1987. Anthycyanins as food colorants – a review. J Food Biochem 11: 201-247. Jalbout AF, Abul Haider Shipar M. 2007. Formation of pyrazines in hydroxyacetaldehyde and glycine nonenzymatic browning Maillard reaction: A computational study. Food Chem 103: 1208-1216. Javeri H, Toledo R, Wicker L. 1991. Vacuum infusion of pectinmethylesterase and calcium effects on firmness of peaches. J Food Sci 56: 739-742. Jurd L. 1964. Reactions involved in sulfite bleaching of anthocyanins. J Food Sci 29: 16-19. Jurd L, Asen S. 1966. The formation of metal and “co-pigment” complexes of cyanidin 3-glucoside. Phytochem 5: 1263-1271. Jurd L. 1972a. Some advances in the chemistry of anthocyanin-type plant pigments. The Chemistry of Plant Pigments Academic Press. New York. USA. Kader F, Haluk JP, Nicolas JP, Metche M. 1998. Degradation of cyanidin 3-glucoside by blueberry polyphenoloxidase: Kinetic studies and mechanisms. J Agric Food Chem 46: 3060-3065. Kamei H, Kojima T, Hasegawa M, Koide T, Umeda T, Yukawa T, Terabe K. 1995. Suppression of tumor cell growth by anthocyanins in vitro. Cancer Invest 13: 590-594. Kang SY, Seeram NP, Nair MG, Bourquin LD. 2003. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett 194: 13-19. Kırca A, Cemeroğlu B. 2003. Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem 81: 583-587. Kırca A, Özkan M, Cemeroğlu B. 2007. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem 101: 212-218. Kleinschmidt MG. 1971. Fate of Di-syston [0,0-diethyl S-[2-(ethylthio)ethyl] phosphorodithioate] in potatoes during processing. J Agric Food Chem 19: 1196-1197. Kong JM, Chia LS, Goh NK, Chiz TF, Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64: 923-33. Ledl F, Schleicher E. 1990. New aspects of the Maillard reaction in foods and in the human body. Angewandte Chemie International Edition in English 29:565–594. Lukaszewska AJ, Dreise GR, Perezzuniga FJ, Goria N. 1989. Effect of cold storage on changes in the content of total and individual free amino acid acids in corollas from cut “Sonia”roses. J Amer Soc Hort Sci 114: 293-297 Lukton A, Chichester CO, Mackinney G. 1956. The breakdown of strawberry anthocyanin pigment. Food Technol 10: 427-432. Mackinney G, Lukton A, Chichester CO. 1955. Strawberry preserves by a low temperature process. Food Technol 9: 324-326. Madhan B, Krishnamoorthy G, Rao RJ, Nair BU. 2007. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase. Int J Biol Macromol 41: 16-22. Maines MD, Costa LG, Reed DJ, Sassa S, Sipes IG. 1999. Current protocol in toxicology. John Wily & Sons, New York, USA. Março PH, Scarminio IS. 2007. Q-mode curve resolution of UV–vis spectra for structural transformation studies of anthocyanins in acidic solutions. Anal Chim Acta 583: 138-146. Markakis P.1982. Anthocyanins as Food Colors. Academic press. New York. USA. Markakis P, Livingston GE, Fellers CR. 1957. Quantitative aspects of strawberry pigment degradation. Food Res 22: 117-129. Meade SJ, Miller AG, Gerrard JA. 2003. The role of dicarbonyl compounds in non-enzymatic crosslinking: a structure–activity study. Bioorg Med Chem 11: 853–862. Meschter EE. 1953. Fruit color loss, effects of carbohydrates and other factors on strawberry products. J Agric Food Chem 1: 574-579. Mikanagi Y, Saito N, Yokoi M, Tatsuzawa F. 2000. Anthocyanins in flowers of genus Rosa, sections Cinnamomeae ( = Rosa), Chinenses, Gallicanae and some modern garden roses. Biochem Syst Ecol 28: 887-902. Mikanagi Y, Yoko M, Ueda Y, Saito N. 1995. Flower flavonol and anthocyanin distribution in subgenus Rosa. Biochem. Systematics and Ecology 23: 183-200. Miller GL, Dean J, Blum R. 1959. A study of methods for preparing oligosaccharides from cellulose. Arch Biochem Biophys 91: 21-26. Omenn GS. 1995. What accounts for the association of vegetables and fruits with lower incidence of cancers and coronary heart diseases. Ann Epidemiol 5: 333-335. ---------------------------------------------------------- VIII 圖目錄 --------------------------------------------------------------------------------------- XI 縮寫表 -----------------------------------------------------------------------------------------XII 糙薏仁萃取物與其區分物代號一覽表 -------------------------------------------------XIV 第一章、緒言----------------------------------------------------------------------------------- 1 一、研究動機 -------------------------------------------------------------------------------1 二、研究方針--------------------------------------------------------------------------------3 第二章、文獻整理 ---------------------------------------------------------------------------- 7 一、薏苡簡介 -------------------------------------------------------------------------------7 二、薏苡之生理機能性- ------------------------------------------------------------------16 三、食物中具降血脂作用的活性成分------------------------------------------------- 23 (一)膳食纖維---------------------------------------------------------------------23 (二)植物固醇---------------------------------------------------------------------33 四、脂質與脂蛋白的代謝---------------------------------------------------------------43 第三章、實驗動物及材料設備 - ---------------------------------------------------------51 一、動物品系 ------------------------------------------------------------------------------51 二、實驗原料 ------------------------------------------------------------------------------51 三、飼料成分 ----------------------------------------------------------------------------51 四、分析用試劑 ---------------------------------------------------------------------------51 五、儀器設備 ------------------------------------------------------------------------------52 第四章、糙薏仁攝取量對降血脂作用的影響 ---------------------------------------- 54 一、前言 -------------------------------------------------------------------------------- 54 二、材料與方法 -------------------------------------------------------------------------- 54 (一)實驗動物、飼料與飼養 ---------------------------------------------------54 (二)檢體收集 --------------------------------------------------------------------55 (三)檢體分析 ------------------------------------------------------------------ 55 (四)統計分析 --------------------------------------------------------------------57 三、結果與討論 -------------------------------------------------------------------------58 (一)糙薏仁不同取代量對倉鼠生長狀況的影響 --------------------------58 (二)糙薏仁不同取代量對倉鼠血漿脂質的影響 --------------------------58 (三)糙薏仁不同取代量對倉鼠肝臟脂質的影響 --------------------------59 (四)糙薏仁不同取代量對倉鼠糞便脂質的影響 --------------------------60 四、結論 ---------------------------------------------------------------------------------- 60 第五章、糙薏仁降血脂作用的活性區分物之研究 ------------------------------------68 第一節、糙薏仁熱水萃取區分物對倉鼠脂質代謝的影響---------------------------68 一、前言-------------------------------------------------------------------------------------68 二、材料與方法----------------------------------------------------------------------------69 (一)糙薏仁熱水萃取物與熱水萃渣的製備 ------------------------------- 69 (二)實驗動物、飼料與飼養---------------------------------------------------69 (三)檢體收集、分析與結果統計---------------------------------------------70 三、結果與討論- --------------------------------------------------------------------------71 (一)糙薏仁熱水萃取物與熱水萃渣的萃取重量分配率及其一般組成 ----- ----------------------------------------------------------------------- 71 (二)在高脂飼料糙薏仁熱水萃取物與熱水萃渣不同取代量對倉鼠生長狀況的影響 ------------------------------------------------------------- 71 (三)糙薏仁熱水萃取物與熱水萃渣不同取代量對倉鼠血漿脂質的影響 - -------------------------------------------------------------------------- --- 72 (四)糙薏仁熱水萃取物與熱水萃渣不同取代量對倉鼠肝臟及糞便脂質的影響 ----------------------------------------------------------------------72 四、結論 ---------------------------------------------------------------------------------- 74 第二節、糙薏仁甲醇萃取區分物對倉鼠脂質代謝及其抑制膽固醇酯轉移蛋白活性的影響------------------------------------------------------------------------- 83 一、前言 -----------------------------------------------------------------------------------83 二、材料與方法 --------------------------------------------------------------------------83 (一)糙薏仁甲醇萃取區分物及其不同溶劑區分物與甲醇萃取渣及其水萃區分物的製備 --- ---------------------------------------------------- 83 (二)膽固醇酯轉移蛋白活性的測定----------------------------------------- 84 (三)實驗動物、飼料與飼養---------------------------------------------------84 (四)檢體收集、分析與結果統計---------------------------------------------86 三、結果與討論 --------------------------------------------------------------------------87 (一)糙薏仁甲醇萃取區分物及其不同溶劑區分物與甲醇萃取渣及其水萃區分物的萃取重量分配率及其一般組成 -------------------------87 (二)糙薏仁甲醇萃取物及其溶劑區分物與甲醇萃取渣之水萃物對CETP活性的影響 --------------------------------------------------------87 (三)糙薏仁甲醇萃取物及其溶劑區分物與甲醇萃取渣及其水萃區分物對倉鼠血漿脂質的影響 -------------------------------------------------88 (四)糙薏仁甲醇萃取物及其溶劑區分物與甲醇萃取渣之水萃物對倉鼠肝臟脂糞便脂質的影響 -------------------------------------------------89 四、結論 ------------------------------------------------------------------------------------90 第三節、糙薏仁的富含水溶性膳食纖維區分物與正己烷萃取區分物對倉鼠脂質代謝的影響 -------------------------------------------------------------------102 一、前言----------------------------------------------------------------------------------- 102 二、材料與方法-------------------------------------------------------------------------- 103 (一)大量萃取糙薏仁的水溶性膳食纖維與製備正己烷萃取區分物--103 (二)實驗動物、飼料與飼養--------------------------------------------------103 (三)檢體收集 -------------------------------------------------------------------104 (四)檢體分析 -------------------------------------------------------------------104 (五)植物固醇含量的測定 --------------------------------------------------106 (六)統計分析 -------------------------------------------------------------------106 三、結果與討論 -------------------------------------------------------------------------107 (一)糙薏仁濕磨後,各區分物的重量分配率及其一般組成與膳食纖維的含量 -----------------------------------------------------------------107 (二)餵食添加由濕磨糙薏仁所得各區分物之高脂飼料對倉鼠血漿脂質的影響 -------------------------------------------------------------------107 (三)餵食添加由濕磨糙薏仁所得各區分物之高脂飼料對倉鼠肝臟脂質的影響 --------------------------------------------------------------------108 (四)餵食添加由濕磨糙薏仁所得各區分物之高脂飼料對倉鼠盲腸短鏈脂肪酸的影響 ----------------------------------------------------------110 (五)餵食添加由濕磨糙薏仁所得各區分物之高脂飼料對倉鼠糞便脂質的影響 ----------------------------------------------------------------- 111 四、結論 -----------------------------------------------------------------------------------112 第四節、糙薏仁的富含水溶性膳食纖維次區分物與其75%酒精可溶區分物對倉鼠脂質代謝作用的影響 ----------------------------------------------------- 127 一、前言 --------------------------------------------------------------------------------127 二、材料與方法 -----------------------------------------------------------------------127 (一)由富含水溶性膳食纖維區分物製備高分子量糙薏仁水溶性膳食纖維和低分子量糙薏仁水溶性膳食纖維次區分物-------------------127 (二)糙薏仁的富含水溶性膳食纖維區分物和其次區分物分子量的測定-------------------------------------------------------------------------------128 (三)糙薏仁的富含水溶性膳食纖維區分物和其次區分物之水合力的測定 --------------------------------------------------------------------------128 (四)實驗動物、飼料與飼養-------------------------------------------------- 128 (五)檢體收集與分析 --------------------------------------------------------- 129 (六)統計分析 ------------------------------------------------------------------ 130三、結果與討論 ------------------------------------------------------------------------- 131 (一)糙薏仁的富含水溶性膳食纖維與其次區分物的理化特性 -----131 (二)餵食糙薏仁的富含水溶性膳食纖維次區分物與75%酒精可溶區分物之脂飼料對倉鼠血漿脂質的影響 --------------------------------131 (三)餵食糙薏仁的富含水溶性膳食纖維次區分物與75%酒精可溶區分物之高脂飼料對倉鼠肝臟脂質的影響 -----------------------------132 四、結論 ---------------------------------------------------------------------------------- 132 第六章、總結 ----------------------------------------------------------------------------- 142 第七章、參考文獻 ------------------------------------------------------------------------ 144832165 bytesapplication/pdfen-US糙薏仁脂質代謝水溶性膳食纖維植物固醇倉鼠dehulled adlaylipid metabolismwater-soluble dietary fiberphytosterolhamster糙薏仁的活性區分物對倉鼠脂質代謝之研究Studies of Dehulled Adlay Active Fractions on the Lipid Metabolism in Hamstersthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/56290/1/ntu-94-D85641004-1.pdf