Chang, Chih-ChungChih-ChungChangLandim, ClaudioClaudioLandimOlla, StefanoStefanoOlla2010-05-222018-06-282010-05-222018-06-28200101788051http://ntur.lib.ntu.edu.tw//handle/246246/184047https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035635290&doi=10.1007%2fPL00008764&partnerID=40&md5=e78ba1bf09879dd30f2a3b0e6aaec75bWe consider an asymmetric exclusion process in dimension d ≥ 3 under diffusive rescaling starting from the Bernoulli product measure with density 0 < α < 1. We prove that the density fluctuation field YNt converges to a generalized Ornstein-Uhlenbeck process, which is formally the solution of the stochastic differential equation dYt = Script A signYtdt + dB∇t, where Script A sign is a second order differential operator and B∇t is a mean zero Gaussian field with known covariances.application/pdf204462 bytesapplication/pdfen-USAsymmetric exclusion processes; Equilibrium fluctuations; Hydrodynamic limitEquilibrium fluctuations of asymmetric simple exclusion processes in dimension d≥3journal article10.1007/PL000087642-s2.0-0035635290WOS:000167815700003http://ntur.lib.ntu.edu.tw/bitstream/246246/184047/1/03.pdf