傅立成臺灣大學:電機工程學研究所鄒岱潔Tzou, Dai-JieDai-JieTzou2007-11-262018-07-062007-11-262018-07-062005http://ntur.lib.ntu.edu.tw//handle/246246/53127本論文提出一個應用於兩台移動式機器手臂合作搬運的分散式控制法則,且同時考量搬運過程之穩定性與操控性。我們首先將軌跡規劃的指令下達給其中一台移動式機器手臂,稱之為領導者,而另外一台移動式機器手臂稱之為追隨者,此機器人須協調其軌跡並保持抓取物體的狀態。接著,我們利用順應運動控制於兩台機器手臂來補償兩個移動式平台的位置誤差,同時保持預期的內力。除此之外,當環境中有障礙物時,我們運用混成式系統的方法來建立合作的模型以完成任務。混成式系統結合了離散事件與連續的動態行為,且將決策的邏輯,代理人的動態行為與其相互之間的通訊皆建立於一致的架構之上,所以非常適合用來建立機器人的合作系統。以混合自動機來描述每台機器人的行為更可以具體的表現出合作任務的執行過程。最後,我們提出模擬的結果以展示我們所提出的合作控制及混成式系統法則的效果。In this thesis, we proposed a decentralized control methodology that not only allows the coordination of two mobile manipulators in executing cooperative task but also considers the cooperation stability and manipulability. The motion command is given to one of the robots, referred to as a leader, and the other robot referred to as follower which need to coordinate its trajectory while maintaining the grasp. Moreover, we apply the compliant motion control to both manipulators to compensate for the platforms’ position errors while maintaining prescribed internal forces. In addition to the cooperative control, we use a hybrid system approach to model the execution of cooperative tasks when there are obstacles in the environment. Hybrid systems combine discrete event and continuous dynamics in a manner that can capture decision logic, agent dynamics, and inter-agent communication in a unified modeling framework, which is adequate to represent cooperative robot system. We utilize a hybrid automaton to specify the behavior of each robot, which allows us to better describe and formalize the execution of cooperative tasks. Finally, we give the simulation results to demonstrate the effectiveness of the basic methodology and the hybrid system approach, respectively.1 Introduction 1 1.1 Motivation 1 1.2 Related Researches 4 1.3 Problem Definition and Objectives 10 1.4 Organization of This Thesis 10 2 Preliminaries 13 2.1 Dexterity Criteria 14 2.1.1 Manipulability Measures 15 2.2 Stability Criteria 18 2.2.1 Dynamic Tip-Over Stability 18 2.2.2 Stability Degree 20 2.2.3 Valid Stable Region 22 3 Constraint System and Kinematic Modeling of Mobile Manipulators 25 3.1 Constraint System 25 3.1.1 Holonomic Constraint 26 3.1.2 Non-Holonomic Constraint 27 3.2 Kinematic Modeling of the Mobile Manipulator 28 3.2.1 Modeling of the Mobile Platform 30 3.2.2 Modeling of the Manipulator 36 4 Cooperative Control of Mobile Manipulators 39 4.1 Introduction 40 4.1.1 Scenario and Problem Descriptions 40 4.1.2 Decentralized System Architecture 41 4.1.3 Methodology 42 4.2 Compliant Control for Cooperative Manipulators 45 4.2.1 An Overview of Compliant Motion Control 46 4.2.2 Compliant Motion Strategy 47 4.2.3 Manipulator Controller Design 51 4.3 Motion Control for Mobile Platforms 53 4.3.1 Control of the Follower Leader Mobile Platform 53 4.3.2 Control of the Leader Mobile Platform 59 4.4 Simulation 62 4.4.1 Simulation Tool and Parameters 62 4.4.2 Simulation Results 66 4.4.2.1. Scenario 1: Line 67 4.4.2.2. Scenario 2: Arc 73 5 A Hybrid System Approach for Cooperative Control 79 5.1 Introduction 80 5.1.1 Problem Descriptions 80 5.1.2 Methodology 81 5.2 Hybrid System Approach for Cooperative Control 84 5.2.1 Introduction to Hybrid Systems 84 5.2.2 Hybrid Automaton for the Follower 89 5.2.3 Hybrid Automaton for the Leader 93 5.3 Simulation 95 5.3.1 Simulation Parameters 95 5.3.2 Simulation Results 97 5.3.2.1. Simulation Group 1 98 5.3.2.2. Simulation Group 2 102 5.3.2.3. Simulation 3 105 6 Conclusions 109 6.1 Summary of the Accomplished Work 109 6.2 Future Work 110 Reference 1135183609 bytesapplication/pdfen-US混成式系統法則移動式機器手臂合作控制Hybrid System ApproachCooperative ControlMobile Manipulators混成式系統法則運用於移動式機器手臂合作控制A Hybrid System Approach for Cooperative Control of Mobile Manipulatorsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/53127/1/ntu-94-R92921008-1.pdf