2015-08-012024-05-14https://scholars.lib.ntu.edu.tw/handle/123456789/658324摘要:膜蛋白嵌入酵素YidC2扮演的角色是調解及傳達在細菌裡其他大多數膜蛋白質能整合進入細菌的細胞膜,在細菌的環境壓力耐受性中扮演一個重要的角色,所以細菌相對難以藉由修改YidC2,來兼容藥物壓力與環境壓力,因此不容易發展出抗藥性,也使得這些抗YidC2的標靶藥物特別適合用於防治葡萄球菌的感染。這個計劃研究的目標是瞭解抗葡萄球菌藥物抑制膜蛋白插入酵素功能的作用機制。為了能探究藥物與蛋白結合的反應中熱力學變化,我們將結合生物化學及生物物理方法在不同溫度下去監測自由能、焓、熵、熱容量、結合常數及化學計量學的變化。在這裡我們也將用X射線晶體學及核磁共振技術去決定葡萄球菌的膜蛋白質嵌入酵素結合抗葡萄球菌藥物的復合物三維立體結構,而這復合物結構能明確地提供有價值的資訊能利於邏輯性的藥物設計、前驅藥物衍生物的最佳化及減少副作用。因此,這個計劃工作讓我們能使用藥物與標地蛋白復合物的熱力學和結構特質去改進藥物在藥物結合位的幾何立體相合性,使前驅藥物衍生物的最佳化能有可觀地加速。<br> Abstract: Membrane protein insertase (also known as translocase) YidC2 play a vital role in mediating the integration of most membrane proteins into the cytoplasmic membrane of bacteria. It is difficult for bacteria to modify membrane insertase YidC in a way compatible with their survival, therefor less prone to develop drug resistance. The objective of the proposed research is to understand antibacterial mechanisms by which the function of insertase YidC2 is inhibited by novel anti-Staphylococcus agents. To explore thermodynamic changes in the protein-inhibitor interaction, we will use a combination of biochemical and biophysical approaches to monitor the changes of free energy, enthalpy, entropy, heat capacity, association constant and stoichiometry at different temperatures and the experimentally thermodynamic data will help us improve the affinity and selectivity. Here we also plan to determine the 3D structures of S. aureus YidC2 bound with candidate compounds by X-ay crystallography and Nuclear magnetic resonance (NMR); the complex structures can definitely provide powerful and valuable information for rational drug design, optimization of lead agents and reducing side effects. Taken together, the proposed work will help us to access the thermodynamic and structural properties of drug-target interactions and then to accelerate the optimization of lead compound by improving the geometrical fit of the drugs within the binding pocket.膜蛋白嵌入酵素X射線晶體學核磁共振技術membrane proteininsertaseX-ay crystallographyNuclear magnetic resonanceNMRStructural Studies of Membrane Protein Insertase Yidc2 in Inhibitor-Bound States