蔣本基臺灣大學:環境工程學研究所陳美吟Chen, Mei-YinMei-YinChen2007-11-292018-06-282007-11-292018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/62663摘 要 傳統煉焦廢水以生物處理為主,生物處理單元之處理功能有其極限,因此須考慮預處理技術及生物處理單元後之高級氧化處理技術。臭氧化處理由於不產生污泥及餘臭氧可快速自解不會造成二次污染,相對於其他高級氧化處理方法有其環境上之優勢。本研究藉由臭氧化改變廢水特性,進一步經由此特性對生物處理程序中,基質降解與菌相影響之深入瞭解,探討臭氧化之應用時機和方式。 臭氧化易受pH值影響反應機制,形成不同性質之反應產物,造成生物處理之複雜性,所以本研究臭氧化實驗採用氣泡管柱臭氧化反應器,在Semi-Batch操作下,以pH值及臭氧化時間之效應,進行不同臭氧程序反應動力及特性探討,並進一步以臭氧化結合生物處理程序操作。預臭氧化結合活性污泥(O3/ASP)之操作以BOD5╱TOC、比攝氧率及比基質降解為操作指標,後臭氧化結合生物活性碳處理(O3/BAC)則以生物毒性、BOD5╱TOC及基質降解為操作指標。同時藉由分子生物技術對生物處理適用菌相之瞭解與掌握,以助提昇臭氧化結合生物處理程序之操作效益。 實驗結果顯示預臭氧氧化初期以基質減少為生物降解主要影響因子,pH=4之臭氧氧化條件結合生物處理則有助於提高生物降解性。預臭氧化廢水馴養後(O3/ASP)之菌相增加分解PAH、苯甲醛、脫氨基水楊酸、poly(3-hydroxybutyrate-co-3-hydroxyvalerate)及脫硝之菌屬。比較不同pH臭氧操作條件結合生物處理,以pH=4之生物處理(O3/ASP)菌相較多樣化。顯見預臭氧化結合生物處理增加菌相之多樣性生態。 後臭氧化若以礦化為目的則以中性臭氧化條件之反應速率最快。由BOD5╱TOC生物降解性指標看,臭氧化顯然提昇生物可分解性,以pH=9較佳;水蚤急毒性則在臭氧化條件為中性時,毒性減量最佳。總體而言後臭氧化操作以中性pH為最適化。由菌相分析瞭解後臭氧結合生物處理,以硝化、脫硝類菌屬、降解酚還原硝酸塩等菌屬為主要菌種族群。後臭氧結合BAC之處理效率約有10%提昇空間,若能加強硝化及馴化可分解環狀物質之菌屬,則仍有提昇生物降解效率之空間。Abstract The activated sludge process is the traditional method to treat coke oven wastewater which may have some drawback and inadequate. In order to treat the high pollution strength wastewater, the pre and post -treatment techniques were considered, of which ozonation was focused. According to the highly oxidative nature, ozone can oxidize pollutants without generating hazardous end products, and the surplus ozone gas can self-decompose quickly. Ozonation has been applied in water treatment for decades and the results are demonstrated successfully. Ozone applied in wastewater treatment has shown the feasibility and treatability in recent years. This merging technology may expend from treating textile wastewater to hard-to-degrade wastewater, i.e. coke oven wastewater. The ozonation experiments are the main focus of this study, some controlling factors are discussed as well. The level of pH would affect the reaction modes of ozonation, direct or free radical reaction mechanism, the treated coke oven wastewater under various pH conditions entering into biological system would have impacts on the microbial system. Therefore, the characters of the ozonation substrate depletion, the relationship between microbial community structure and substrate depletion are investigated. This study also investigated the amount and timing of ozone dose applied into reaction system. The ozonation experiments were conducted in a semi-batch bubble column reactor. The treated wastewater was discharged into biological system to investigate the biodegradation. The biodegradable index of pre-ozonation combined activated sludge process (O3/ASP) is based on BOD5/TOC, specific oxygen uptake rates, and specific substrate depletion. The index of post-ozonation combined biological activated carbon is based on bioassay, BOD5/TOC and substrate depletion. Meanwhile, by using the molecular biotechnology to explore the microbial community would benefit to understand the process of combination of ozonation and biological treatment. On the early stage of pre-ozonation, experiments results reveal that the substrate reduction is the major effect factor to the biodegradation; at pH = 4, the combination of ozonations and biological treatment would enhance the biodegradation. An acclimated microbial community from post-ozonation wastewater (O3/ASP) increases degradation of PAH 、 benzaldehyde、aminosalicylate、poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and ammonia. Comparing the different pH operating condition of ozonation, under the conditions of ozonation combined with biological treatment and O3/ASP at pH = 4 could result in various microbial community. Thus, it could be concluded that the combination of pre-ozonation and biological treatments would increase the variety of microbial community. Taking BOD5/TOC as a biodegradation index, it could be observed from the results that ozonation could enhance biodegradation, and pH=9 is the optimum conditions. In the Daphnia Acute toxicity test, the toxicity reduction was significant under neutral condition. Using microbial community structure to reveal the process of the combination of post-ozonation and biological treatments is still based on the bacteria groups, such as nitrified bacteria and denitrifying bacteria. Although, there is not significant result comes from the combination of post-ozonation and BAC, the rate of biodegradation still can be improved if the nitrifications and amount of bacteria which comes from the acclimated aromatic compound have been enhanced or added in this experiment.目 錄 頁次 致謝 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅳ 目錄 Ⅶ 圖目錄 XI 表目錄 XIV 第一章 前言 1-1 研究背景與緣起 1-1 1-2 研究目的 1-2 第二章 文獻回顧 2-1 煉焦製程及其廢水處理程序 2-1 2-1-1 煉焦製程 2-1 2-1-2 煉焦產物及廢水性質 2-2 2-1-3 煉焦廢水處理程序與技術 2-4 2-2 臭氧化原理及應用 2-6 2-2-1 臭氧在水溶液中之質傳 2-8 2-2-2 臭氧與水溶液中有機物之反應動力 2-10 2-2-3 臭氧在水溶液中之反應機制 2-11 2-2-4 臭氧在廢水處理之應用 2-14 2-3 污泥活性與廢水毒性評估 2-15 2-3-1 污泥活性評估原理 2-15 2-3-2廢水毒性評估方式 2-17 2-4 生物降解原理及應用 2-21 2-4-1 活性污泥法生物降解原理 2-21 2-4-2 管柱式生物活性碳之生物降解與應用 2-23 2-4-3高級氧化法對生物降解之影響 2-24 2-5 分子生物技術菌相分析原理與應用 2-26 2-5-1分子生物技術菌相分析原理 2-26 2-5-2 分子生物技術菌相分析之應用 2-28 第三章 實驗設備與方法 3-1 研究方法與流程 3-1 3-2 實驗設計與規劃 3-3 3-2-1 廢水及活性污泥性質 3-3 3-2-2 實驗方法及操作參數 3-6 3-2-2-1.臭氧化實驗 3-6 3-2-2-2.活性污泥程序(ASP)污泥馴養實驗 3-7 3-2-2-3.管柱式生物活性碳(BAC)馴養實驗 3-8 3-2-2-4.污泥活性及水蚤急毒性測試方法 3-9 3-2-3 實驗設計內容 3-10 3-3 實驗設備、材料與分析方法 3-15 3-3-1 臭氧化實驗設備 3-15 3-3-2 ASP實驗設備 3-16 3-3-3 BAC實驗設備 3-18 3-3-4 實驗分析方法及儀器、藥品 3-20 3-3-5 儀器校正測試 3-22 3-3-6 分子生物菌相分析技術及流程 3-24 第四章 結果與討論 4-1 預臭氧化特性探討 4-1 4-1-1預臭氧化反應動力 4-1 4-1-2臭氧消耗量與去除效率探討 4-7. 4-1-3生物分解性指標及污泥活性評估 4-10 4-1-3-1臭氧化之生物分解性指標 4-10 4-1-3-2臭氧化對比攝氧率(SOUR)之影響 4-15 4-2 預臭氧化(O3)結合活性污泥(ASP)功能評估 4-20 4-2-1 ASP與O3 /ASP之活性污泥菌相 4-20 4-2-1-1 16S rDNA Clone library之建立 4-20 4-2-1-2 ASP與O3 /ASP活性污泥菌相之比較 4-25 4-2-2 ASP操作測試(without ozonation) 4-26 4-2-2-1 基微比(S/X)操作條件 4-26 4-2-2-2 比基質削減速率與污染去除率 4-27 4-2-2-3 污染物之降解與活性污泥菌相 4-29 4-2-3 O3 /ASP操作測試(with ozonation) 4-31 4-2-3-1活性污泥操作與比基質削減速率 4-31 4-2-3-2污染物之降解與活性污泥菌相 4-33 4-3 後臭氧化特性探討 4-38 4-3-1預臭氧化反應動力 4-38 4-3-2臭氧消耗量與污染物去除效率探討 4-44 4-3-2-1 COD/TOC化學分解性指標探討 4-44 4-3-2-2 臭氧消耗量與TOC累計去除率關係 4-46 4-3-3 生物毒性及BOD5/TOC生物降解性評估 4-48 4-4 後臭氧化(O3)結合生物活性碳(BAC)之評估 4-54 4-4-1 EBCT對BAC及O3 /BAC基質去除效應 4-54 4-4-2 臭氧化對BAC菌相族群之影響 4-56 第五章 結論與建議 5-1 結論 5-1 5-2 建議 5-2 參考文獻 附件一 圖 目 錄 圖2-1 煤行高溫分解示意圖(弗赫與山多福法) 2-2 圖2-2 煤之衍生產物 2-3 圖2-3 臭氧自解連鎖反應圖示 2-7 圖2-4 臭氧化之誘發、催化、抑制鏈鎖反應圖示 2-8 圖2-5 芳香族化合物之直接臭氧化反應機制 2-12 圖2-6 氯酚之氫氧自由基臭氧化反應機制 2-12 圖2-7 酚之直接臭氧化反應機制 2-13 圖2-8 48小時Daphnia LC50之計算流程圖 2-20 圖2-9 酚的生物降解路徑圖 2-23 圖3-1 臭氧化結合生物處理程序研究流程圖 3-2 圖3-2-1 臭氧化結合生物處理實驗之廢水來源 3-4 圖3-2-2 pH控制參數下之預臭氧反應動力實驗流程圖 3-10 圖3-2-3 預臭氧化活性污泥法實驗流程圖 3-11 圖3-2-4 pH控制參數下之後臭氧反應動力實驗流程圖 3-12 圖3-2-5 後臭氧化管柱式生物活性碳實驗流程圖 3-13 圖3-2-6 臭氧化菌相實驗流程圖 3-14 圖3-3-1 臭氧化實驗設施 3-15 圖3-3-2 預臭氧化廢水生物降解實驗(ASP)設備 3-16 圖3-3-3 管柱式生物活性碳(BAC)實驗設備 3-17 圖3-3-4 臭氧機臭氧劑量校正曲線 3-22 圖3-3-5 氣體流量校正曲線 3-24 圖4-1-1 預臭氧化pH值對TOC降解之影響 4-2 圖4-1-2 pH值及臭氧化時間對色度之影響 4-2 圖4-1-3 不同pH臭氧化條件之HPLC分析圖譜 4-4 圖4-1-4 pH操作條件對酚之影響 4-5 圖4-1-5 不同pH操作條件時,硫氰化物、氰化物之臭氧化反應 4-6 圖4-1-6 煉焦廢水在不同pH操作條件之臭氧消耗量 4-7 圖4-1-7 臭氧消耗量對TOC去除率之影響 4-9 圖4-1-8 臭氧消耗量對酚及硫氰化物去除率之影響 4-9 圖4-1-9 預臭氧化pH值對BOD消減之影響 4-11 圖4-1-10 臭氧化對BOD5╱TOC、BOD5╱COD之效應 4-13 圖4-1-11 預臭氧化COD/TOC與臭氧化時間之關係 4-13 圖4-1-12 預臭氧化BOD與COD、TOC之關係 4-14 圖4-1-13 預臭氧化pH值操作條件對生物降解性之影響 4-15 圖4-1-14 預臭氧化時間對比攝氧率之影響 4-16 圖4-1-15 基質╱微生物比值(S/X)對比攝氧率之影響 4-17 圖4-1-16 以酚及CN-為基質之S/X比值對比攝氧率之影響 4-18 圖4-1-17 TOC為基質之S/X比值對比攝氧率之影響 4-18 圖4-2-1 以P1,P2 引子進行聚合酶鏈鎖反應產物之電泳結果 4-21 圖4-2-2 以M13F,R引子進行聚合酶鏈鎖反應產物之電泳結果 4-21 圖4-2-3 編號1~18選殖株在DGGE膠片分群的狀況(一) 4-22 圖4-2-4 編號20~23及42~57選殖株在DGGE膠片分群的狀況(二) 4-22 圖4-2-5 編號49~59選殖株在DGGE膠片分群的狀況(三) 4-23 圖4-2-6 ASP及O3/ASP活性污泥菌相 4-26 圖4-2-7  MLSS、S/X與去除率之操作情形 4-27 圖4-2-8 TOC及酚之比基質削減速率(q)-濃度(Se)曲線 4-28 圖4-2-9 比基質削減速率(q)與TOC、酚去除率之關係 4-28 圖4-2-10 TOC及酚之比基質削減速率(q)與基微比 S/X) 4-29 圖4-2-11 活性污泥在基微比=0.11時,污染物生物降解之HPLC圖譜 4-30 圖4-2-12 基微比對活性污泥菌相之影響 4-30 圖4-2-13 臭氧化廢水馴養期間之操作情形 4-31 圖4-2-14 比較ASP及O3/ASP之q-Se曲線 4-32 圖4-2-15 不同臭氧化時間之比基質削減速率 4-33 圖4-2-16 比較O3/ASP在不同pH值及反應時間,生物降解情況 4-34 圖4-2-17 不同臭氧化時間之菌相分析(pH=7) 4-35 圖4-2-18 不同臭氧化時間之菌相分析(pH=4) 4-36 圖4-3-1 不同pH值操作下,後臭氧反應廢水TOC變化 4-38 圖4-3-2 不同pH值,後臭氧反應操作下,廢水色度隨反應時間遞變 4-39 圖4-3-3 不同pH值操作下,後臭氧反應廢水HPLC分析圖譜 4-40 圖4-3-4 不同pH值操作下,後臭氧反應廢水CN-及SCN-變化 4-41 圖4-3-5 不同pH值操作下,後臭氧反應廢水硝酸塩生成反應 4-43 圖4-3-6後臭氧化TOC、COD之關係 4-44 圖4-3-7 臭氧劑量與臭氧化時間對COD/TOC比值之影響 4-45 圖4-3-8 砂濾廢水在不同pH操作條件之臭氧消耗量 4-46 圖4-3-9 TOC去除率與臭氧消耗量之關係 4-47 圖4-3-10 不同pH值操作,後臭氧對水蚤急毒性之效應 4-49 圖4-3-11 不同pH值操作下,後臭氧反應廢水BOD5變化 4-50 圖4-3-12 不同pH值操作下, BOD5/TOC之後臭氧效應 4-51 圖4-3-13 不同臭氧劑量操作,BOD5/TOC之後臭氧效應 4-52 圖4-4-1 流速與基質降解速率之關係 4-54 圖4-4-2 EBCT對去除率之影響 4-55 圖4-4-3 選殖株在DGGE膠片分群的狀況(一) 4-56 圖4-4-3 選殖株在DGGE膠片分群的狀況(二) 4-57 圖4-4-4  BAC及O3/BAC之菌相 4-59 表 目 錄 表2-1 各國煉焦廢水特性成份組成 2-4 表2-2 各國煉焦廢水處理程序 2-5 表2-3 典型臭氧化之誘發物質、催化物質、抑制物質 2-7 表2-4 廢水特定污染物臭氧化反應之Ha與反應動力區 2-10 表2-5 以參考毒物進行急毒性試驗之精確度 2-17 表2-6 Microtox 與Daphnia之測試結果比較 2-18 表2-7 酚類物質以臭氧化結合好氧生物處理之分解性指標 2-25 表3-2-1 調勻池出流水質變異性統計(2005/01/01~2005/12/31) 3-5 表3-2-2 砂濾池出流水質變異性統計(2005/01/01~2005/12/31) 3-5 表3-2-3 活性迴流污泥性質 3-5 表3-2-4 生物處理單元污染物去除效率(2005/01/01~2005/12/31) 3-5 表3-2-5 臭氧化操作參數 3-6 表3-2-6 活性污泥生物處理(ASP)操作參數 3-6 表3-2-7 管柱式生物活性碳生物處理(BAC)操作參數 3-8 表3-3-1 分析方法、儀器及藥品一覽表 3-20 表3-3-2 臭氧氣體劑量校正數據 3-23 表3-3-3 氣體流量校正數據 3-23 表3-3-4 分子生物菌相分析設備及藥品 3-25 表3-3-5 PCR反應條件設定值 3-28 表3-3-6 DGGE之PCR反應條件設定值 3-28 表3-3-7 本研究聚合酶反應所使用引子之序列 3-29 表3-3-8 PCR試劑用量 3-29 表3-3-9 DGGE變性梯度配製溶液成分表(一片膠) 3-32 表4-1-1 假一階反應污染物之預臭氧化速率常數 4-6 表4-1-2 污染物與臭氧消耗計量關係 4-10 表4-1-3 預臭氧化廢水污染物水質相關係數(pH=4) 4-11 表4-1-4 預臭氧化廢水污染物水質相關係數(pH=7) 4-12 表4-1-5 預臭氧化廢水污染物水質相關係數(pH=9) 4-12 表4-2-1 活性污泥實驗、對照組之DNA品質 4-20 表4-2-2 活性污泥16S rDNA鑑定結果 4-24 表4-3-1 假一階反應TOC及ADMI之後臭氧化全反應速率常數 4-43 表4-3-2 後臭氧化COD與TOC之比值 4-45 表4-3-3 污染物與臭氧消耗計量關係 4-47 表4-4-1 BAC實驗、對照組之DNA品質 4-56 表4-4-2 BAC馴養菌種16S rDNA選殖鑑定結果 4-586345889 bytesapplication/pdfen-US臭氧化煉焦廢水菌相生物降解性coke oven wastewaterozonebiodegradationPCRmicrobial community[SDGs]SDG11[SDGs]SDG13以臭氧處理煉焦廢水之效能評估Performance Evaluation of Coke Wastewater Treated by Ozonethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62663/1/ntu-95-P92541209-1.pdf