馬劍清臺灣大學:機械工程學研究所梁正言Liang, Cheng-YenCheng-YenLiang2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61455光纖光柵在具有的優良機械性質、抗電磁干擾等優點,因此在光電與量測領域上,有著發展的潛力。 目前本實驗室所使用的能量調變型感測系統,是用長週期光纖光柵及FBG短週期光纖光柵當濾波器之用,前者利用其穿透頻譜,有著能量測數十微米量級大位移量的特色;後者則利用其反射頻譜,有高靈敏度與量測微小動態位移的特色;唯長週期光纖濾波器受限其穿透能量較低,FBG週期光纖光柵濾波器其能量大多穿透光柵,反射能量利用低,使得量測時高頻與微小振動因主要訊號與雜訊混雜而無法判別,因此本論文利用FBG短週期光纖光柵之穿透頻譜做濾波,期能提高其訊噪比(SNR)。 同時本論文主要以本實驗室開發之能量調變型感測器為基礎,以短週期光纖光柵穿透頻譜濾波之穿透光路,以及將光纖光柵感測器平貼和平拉於待測物之表面,配合本實驗室開發出面外垂直式光纖量測,希望能改善以往光纖量測系統僅能一維之量測,期望發展出高頻光纖光柵感測器與多維度、多點之動態量測系統,探討面內與面外運動耦合效應。另外,光纖光柵感測器加上Dynamic Signal Analyzer,作為動態掃頻系統之開發與應用,亦是本論文之研究方向與重點。Recently, fiber Bragg gratings (FBG) have been applied to sense strain and temperature variation due to their high sensitivity, electromagnetic immunity and good engineering properties. Many papers have been demonstrated their performance in many engineering fields, including strain measurements in civil engineering and composite structures. However, these applications were used for static or low frequency measurements, high frequency dynamic measurement needed further study. We have used the intensity-modulated FBG sensing system with long period fiber grating (LPG) filter to measure micro-measurand in only one direction. In order to increase the sensitivity and signal-to-noise ratio of the FBG system and to make simultaneous dynamic measurements in multiple directions at a single point, we develop high-frequency in-plane and the out-of-plane FBG sensors with transmitted spectra of FBG filters to measure out-of-plane and in-plane dynamic responses. Furthermore, we integrate the FBG sensing system with Dynamic Signal Analyzer to develop a dynamic signal system. All dynamic responses are measured simultaneously by the LDV system and strain gage. Results agree with those obtained from LDV and strain gage. Key words : FBG sensing system, high frequency dynamic measurement, FBG filter, simultaneous dynamic measurements, multiple directions.目錄 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 5 1-3 內容簡介 8 第二章 光纖光柵基本原理 10 2-1 基本光纖光學 10 2-2 光纖光柵原理 13 2-2.1 光纖光柵之分類 14 2-3 光纖光柵之製作 15 2-3.1 光纖光柵製作方法 16 2-4 光彈原理與熱光效應 19 2-4.1 光彈原理 19 2-4.2 熱光原理 22 2-5 共振波長飄移理論 22 2-5.1 共振波長飄移原理 23 2-5.2 受平面應力狀態 24 2-5.3 受單軸應力狀態 25 第三章 實驗儀器設備簡介 31 3-1 雷射都普勒振動儀 31 3-2 應變規訊號制約放大器 32 3-3 動態訊號分析儀 34 3-4 阻抗分析儀 36 第四章 光纖光柵量測系統與穩態特性實驗 40 4-1 能量調變式光纖光柵量測系統光路介紹 40 4-2 量測系統之介紹 41 4-2.1 光纖動態量測系統 41 4-3 穩態實驗量測與結果討論 42 4-3.1 積層式壓電致動器 43 4-3.2 實驗架設 43 第五章 壓電陶瓷平板面外與面內高頻穩態實驗 88 5-1 壓電陶瓷平板面內與面外動態特性量測 88 5-1.1 壓電陶瓷平板規格說明 88 5-1.2 實驗架設 88 5-1.3 動態訊號掃頻原理 90 5-2 實驗結果與討論 91 5-2.1 掃頻結果與討論 91 5-2.2 共振頻率下面內與面外時域訊號量測結果與討論 92 5-2.3 面內高頻訊號結果與討論 95 5-2.4 壓電陶瓷平板暫態訊號結果討論 96 第六章 方形與圓形圓形塊材暫態波傳實驗 134 6-1 方形鋁塊之暫態波傳 134 6-1.1 實驗架設 134 6-1.2 不同鋼珠掉落處同一點之面內與面外運動結果討論 135 6-1.3 方形鋁塊面內與面外暫態波傳同步量測結果與討論 138 6-2 圓形鋁塊之暫態波傳 141 6-2.1 實驗架設 141 6-2.2 圓形鋁塊面內與面外暫態波傳同步量測結果與討論 141 6-3 鋁塊鋼珠撞擊實驗在頻率域下之探討 143 第七章 結論與未來展望 171 7-1 結論 171 7-2 未來展望 172 參考文獻 17322731369 bytesapplication/pdfen-US短週期光纖光柵穿透頻譜同步量測多維量測掃頻系統穩態振動動態系統暫態波傳FBG sensing systemhigh frequency dynamic measurementFBGsimultaneous dynamic measurementsin-planeout-of-plane高頻面內光纖光柵感測器及其動態量測系統之開發與研究The Development of the High Frequency In-plane FBG Sensor and Its Dynamic Measuring Systemthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61455/1/ntu-96-R94522510-1.pdf