馬鴻文臺灣大學:環境工程學研究所王朝民Wang, Chao-MinChao-MinWang2007-11-292018-06-282007-11-292018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/62712在採用風險評估衡量都市垃圾焚化廠所排放的戴奧辛對周遭生物所造成的影響時,需要各方面正確的資料,特別是焚化廠方所提供的戴奧辛排放數據。另外焚化廠周界大氣戴奧辛濃度檢測的結果往往與風險評估時所使用的ISCST大氣擴散模式模擬結果有明顯差異,造成周界居民與焚化廠雙方的爭執。 本研究將嘗試解決以上兩問題:第一為檢驗焚化廠方所提供的戴奧辛排放數據是否合理;第二為改善因ISCST模式值與實測值間差異造成的問題,兩者皆依資料探勘觀念進行研究。前者採用SOM類神經網路建立焚化廠煙道戴奧辛濃度異常值檢測方法,對異常數據提出合理懷疑。後者採用BPN類神經網路模擬ISCST模式值與實測值之比值,找尋由ISCST模式值推算周界濃度實測值方法。 研究結果顯示,SOM類神經網路在33筆戴奧辛檢測報告中發現4筆異常數據,其焚化廠操作條件與戴奧辛濃度在分群上產生不合理現象,在風險評估上應避免使用。 BPN類神經網路在全國九座都市垃圾焚化廠107筆周界大氣戴奧辛檢測數據中使用90%的數據量做為訓練,10%數據量做為測試,模擬ISCST模式濃度與實測濃度比值,其MSE分別為0.0173及0.0150,效果不佳。若採用相同地域條件的高雄三座焚化廠做BPN類神經網路建置,則可得到更佳的學習效果。最後使用SOM類神經網路進行周界大氣戴奧辛與焚化廠煙道戴奧辛指紋辨識,發現就目前收集到的資料而言,焚化廠煙道戴奧辛與周界大氣戴奧辛大不相同,在此情況下由焚化廠經ISCST模式推算周界戴奧辛濃度的效果不佳。When using the risk assessment method to examine the impact of dioxins released from municipal solid waste incinerators (MSWIs), we need correct data in all respects, especially the dioxins emission data provided by the operators of incinerators. Furthermore, the dioxin concentrations measured in MSWIs surroundings are usually quite different from those from the result of air dispersion model, such as ISCST. The difference makes it hard for decision makers to issue risk management strategies. In order to address these issues, this study proposes methods of assessing the correctness of emission data and relating ambient concentration measurements to predictions from modeling. The methodologies of this research are developed based on the data mining theory. We adopt SOM to establish outlier analysis method of incinerator flue dioxins concentrations and suggest reasonable explanation to the unusual data. BPN is then used to simulate the ratio of the ISCST modeling value and the measured value, attempting to estimate observed ambient concentrations from the ISCST modeling results. The result of study shows that there are 4 outlier data among the 33 incinerator flue dioxin measurement reports in SOM topology; we should avoid use of the 4 data in risk assessment. In BPN neural network, there are 107 ambient air dioxin measurement reports from the 9 incinerators in Taiwan, and we use 90% data for training and 10% data for testing to simulate the ratio of ISCST-predicted values and the observed values. The MSE values are 0.0173 and 0.0150, respectively, meaning that the relation is not significant. Then we adopt data from 3 incinerators in the same area in Kaohsiung to build BPN neural network and get better result. Finally, we use SOM neural network to identify ambient air dioxins fingerprints and incinerator flue dioxins fingerprints. For the data collected at present, we find that the dioxins fingerprints in the ambient air are quite different from the dioxins fingerprints in the incinerator flues. In this situation, it is not appropriate to estimate the observed value via the ISCST modeling value and BPN neural network.摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第2章 文獻回顧 3 2.1 戴奧辛生成與控制 3 2.1.1. 戴奧辛生成機制 3 2.1.2. 戴奧辛生成相關因子 4 2.1.3. 都市垃圾焚化爐戴奧辛控制機制 6 2.2 ISCST擴散模式 8 2.3 異常診斷 10 2.4 類神經網路 13 2.4.1. 自組織特徵映射網路 13 2.4.1.1. 自組織特徵映射網路演算法 14 2.4.1.2. SOM視覺化 19 2.4.1.3. 自組織特徵映射網路應用 19 2.4.2. 倒傳遞類神經網路 21 2.4.2.1. 倒傳遞類神經網路演算法 22 2.4.2.2. 倒傳遞類神經網路之參數設定 26 2.4.2.3. 倒傳遞類神經網路應用於大氣擴散模式 30 第3章 研究方法 32 3.1 戴奧辛異常值檢測方法 35 3.1.1. 資料取得 35 3.1.2. SOM類神經網路建立 35 3.1.3. 實驗測試 38 3.2 模式值與實測值關聯性建立 43 3.2.1. 周界濃度實測值資料收集 43 3.2.2. ISCST模式模擬 43 3.2.2.1. 地形資料收集 43 3.2.2.2. 氣象資料收集 44 3.2.2.3. 汙染源資料收集 44 3.2.2.4. 受體點資料收集 45 3.2.3. BPN類神經網路建立 45 3.2.3.1. 輸入參數選擇 46 3.2.3.2. 網路架構 47 第4章 研究結果 49 4.1 戴奧辛異常值檢測 49 4.1.1. 網格大小決定 51 4.1.2. 鄰近函數及鄰近半徑決定 55 4.1.3. 焚化參數重要性決定 57 4.1.4. 學習速率決定 61 4.1.5. SOM異常值檢測結果 64 4.1.6. 小結 79 4.2 模式值與實測值關聯結果 82 4.2.1. ISCST3模擬結果 82 4.2.2. BPN類神經網路輸入參數決定 94 4.2.3. 轉換函數對模擬結果影響 96 4.2.4. 學習速率對模擬結果影響 97 4.2.5. 隱藏層運算單元數對模擬結果影響 98 4.2.6. 學習次數對模擬結果影響 107 4.2.7. 模擬結果探討 110 4.2.8. 考慮地域特性建立類神經網路 112 4.2.9. 小結 116 第5章 結論與建議 123 5.1 假設與限制 123 5.2 結論 124 5.3 建議 125 參考文獻 127 附錄一 92~94年間A廠焚化廠33次煙道戴奧辛檢測及焚化廠操作條件 131 附錄二 91~93年間全省九座焚化廠周界相關數據及ISCST模式值與實測值比值 1362326988 bytesapplication/pdfen-US戴奧辛異常值檢測自組織特徵映射網路倒傳遞類神經網路大氣擴散模式dioxinsoutlier miningSOMBPNair dispersion model[SDGs]SDG11[SDGs]SDG12應用類神經網路提升焚化廠風險評估前置資料品質Using Neural Network to Improve Data Quality for Incinerator Risk Assessmentthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/62712/1/ntu-95-R93541203-1.pdf