黃美嬌臺灣大學:機械工程學研究所張泰鳴Chang, Tai-MingTai-MingChang2007-11-282018-06-282007-11-282018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/61576當熱電元件尺寸縮小時,其晶格熱傳導係數會因尺寸效應而降低,致冷效率因而提升。本論文主要目標在於重建一個計算單層奈米薄膜平面方向晶格熱傳導係數之理論。整個分析的理論基礎是以粒子說觀念來處理聲子,以鬆弛時間近似法來求解聲子波茲曼傳輸方程式,並且考慮(i)受尺寸影響而改變的聲子色散關係;(ii)因邊界散射而改變的聲子非平衡分佈;(iii)求取熱傳導係數時,保有聲子群速為頻率之函數,使整個理論更具一致性;以及(iv)以最大允許波向量配合聲子色散關係求德拜溫度。從分析中得知,因薄膜空間上的限制造成聲子群速變慢、德拜溫度下降,而邊界的粗糙度也改變了聲子在原來塊材下的非平衡分佈,還有因尺寸效應而造成聲子邊界散射率增強,這些因素都會導致薄膜平面方向之晶格熱傳導係數驟降。從預測出的熱傳導係數與溫度、邊界粗糙度以及厚度的敏感度來看,皆與前人的理論分析和實驗數據相當一致。The lattice thermal conductivity of a thin film structure is a critical issue to improve the figure of merit of thermoelectric materials. The main purpose of this thesis is to re-establish a theory for calculating the in-plane lattice thermal conductivity of a thin film. The theory is constructed based on the particle-concept. The phonon Boltzmann transport equation with the relaxation time approximation is solved. For completeness and consistency, the proposed theory takes into account (i) the modification of the acoustic phonon dispersion relation due to spatial confinement, (ii) the change in the non-equilibrium phonon distribution due to partially diffuse boundary scattering, (iii) the frequency -dependence of the phonon group velocity, and (iv) the adoption of the maximum allowed wave vector in order to calculate the Debye temperature according to the modified phonon dispersion relation. From the calculations, we predict that the decrease of the phonon group velocity and the Debye temperature, the increase of the boundary roughness and the enhanced phonon scattering lead to a significant reduction of the lattice thermal conductivity. The sensitivities of the thermal conductivity on the temperature, the boundary roughness, and the film thickness agree well recent theoretical and experimental investigations.目錄 中文摘要 v 英文摘要 vi 表目錄 x 圖目錄 xi 符號說明 xviii 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及目的 5 1-3 論文架構 5 第二章 尺寸效應下的聲子色散關係 7 2-1 塊材之聲子色散關係 8 2-2 自由表面奈米薄膜之聲子色散關係 9 2-2-1 Confined Eigenmodes:Shear waves 11 2-2-2 Confined Eigenmodes:Dilatational waves 13 2-2-3 Confined Eigenmodes:Flexural waves 16 2-3 箝住表面奈米薄膜之聲子色散關係 17 2-3-1 Confined Eigenmodes:Shear waves 18 2-3-2 Confined Eigenmodes:Dilatational waves 18 2-3-3 Confined Eigenmodes:Flexural waves 19 2-4 聲子之平均群速 19 第三章 Confined Phonon Knudsen Flow 23 3-1 邊界條件 23 3-2 Phonon Knudsen Flow 25 3-2-1 塊材之聲子分佈函數 27 3-2-2 奈米薄膜之聲子分佈函數 28 3-3 鬆弛時間 30 第四章 自由表面奈米薄膜 34 4-1 常數平均自由路徑模型 34 4-2 鬆弛時間模型 37 4-2-1 選擇一 38 4-2-2 選擇二 41 4-2-3 選擇三 42 第五章 箝住表面奈米薄膜 44 5-1 常數平均自由路徑模型 44 5-2 鬆弛時間模型 45 5-2-1 選擇一 45 5-2-2 選擇三 47 第六章 結論與未來展望 49 6-1 基本假設 49 6-2 分析方法 50 6-3 結論 51 6-4 未來展望 54 附錄A 55 參考文獻 712227846 bytesapplication/pdfen-US薄膜聲子波茲曼方程式晶格熱傳導係數Thin-filmPhonon Boltzmann transport equationLattice thermal conductivity奈米薄膜之晶格熱傳導係數分析The analysis of lattice thermal conductivity in thin filmthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61576/1/ntu-94-R92522109-1.pdf