劉致為臺灣大學:電子工程學研究所洪澤安Tzer An, HungHungTzer An2010-07-142018-07-102010-07-142018-07-102008U0001-1907200811043300http://ntur.lib.ntu.edu.tw//handle/246246/189048本論文中,製作了金氧半發光元件且探討其發光特性。製作的金氧半發光元件結構包括以二氧化矽為絕緣層的鍺金氧半發光元件、以氧化鋁為絕緣層的鍺金氧半發光元件以及六氫-碳化矽金氧半發光元件。金氧半發光元件激發出紅外光。發光頻譜以電子-電洞-電漿復合模型得到頻譜理論線。此理論線使用五個藉由聲子參與發光的頻譜,包括橫向光學聲子、縱向聲學聲子和橫向聲學聲子的激發,以及橫向聲學聲子和縱向聲學聲子的吸收。藉由吸收橫向聲學聲子發光的光強度會隨溫度上升而變強。場致發光比光激發光還要能壓制熱截止現象,是由於場致發光的多數載子濃度遠比少數載子濃度大,使得發光復合機率只受限於少數載子量的降低。氧化鋁為絕緣層的鍺金氧半發光元件比之以二氧化矽為絕緣層的鍺金氧半發光元件有了特性上的提升,包括更小的操作電壓、更小的漏電流、更強的發光強度,更低的非輻射緩解遷移以及在更高溫度的操作下有更高的發光強度的。六氫-碳化矽金氧半發光元件在逆偏壓至崩潰時激發出藍光。In this thesis, various metal-oxide-semiconductor light-emitting-devices (MOS LED) were fabricated and investigated of their luminescence characteristics. The MOS LED structures include the Ge MOS LED with silicon dioxide (SiO2), Ge MOS LED with aluminum oxide (Al2O3) and the 6H-SiC MOS LED. nfrared emission is observed from the Ge MOS LED. A spectral line fit is performed on the luminescence spectrum with the electron-hole-plasma (EHP) recombination model with 5 phonon assisted replica, including TO, LA, TA emission, and TA, LA absorption. Intensity of the TA phonon absorption is seen to increase at elevated temperatures. Reduced thermal quenching in electroluminescence compared to photoluminescence measurements is due to the large difference in concentration between the majority and minority carriers in EL, which limits the cause of the decrease of radiative recombination probability to only the lowering of the minority concentration. The Ge MOS LED with Al2O3 insulator shows improvements in performance that include smaller operating voltage, smaller leakage current, stronger light emission, reduced nonradiative radiation and an increase in light emission intensity at elevated operation temperatures. Blue luminescence at reverse bias is observed in the 6H-SiC MOS LED.List of Figures Xhapter 1 Introduction 1.1 Motivation 1.2 Organization 3.3 References 4hapter 2 Infrared Emission from Ge MOS LED 5.1 Introduction 5.2 Device Fabrication and Experimental Setup 5.3 Infrared Emission from Ge MOS LED 9.3.1 Electroluminescence of Ge MOS LED 9.3.2 Electron-Hole-Plasma Recombination Model 11.3.3 Theoretical Analysis of Electron-Hole-Plasma Recombination Model 13.3.4 Temperature Dependence of EL and PL 16.4 Summary 24.5 References 24hapter 3 Ge MOS LED with High-k Dielectric Insulator 27.1 Introduction 27.2 Device Fabrication and Experimental Setup 27.3 Characteristics Comparison Between Al2O3 and SiO2 as Insulator 28.3.1 Current-Voltage Characteristics Analysis 28.3.2 Current-Light Intensity Characteristic Analysis 31.3.3 Minority Carrier Lifetime Measurement by EL Method 33.3.4 Temperature dependence of EL and PL 35.4 Summary 45.5 References 46hapter 4 SiC MOS LED 48.1 Introduction 48.2 Device Fabrication and Experimental Setup 48.3 Results and Discussion 50.3.1 PL Characteristic Analysis 50.3.2 Current-Voltage Characteristic Analysis 55.3.3 EL Characteristic Analysis 57.4 Summary 61.5 References 61hapter 5 Summary and Future Work 63.1 Summary 63.2 Future Work 641853950 bytesapplication/pdfen-US金氧半二極體發光元件六氫-碳化矽場致發熱截止MOSLED6H-SiCELthermal quenching四族金氧半發光元件Group IV Element Metal-Oxide-Semiconductor Light Emitting Devicesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/189048/1/ntu-97-R95943047-1.pdf