2020-08-012024-05-16https://scholars.lib.ntu.edu.tw/handle/123456789/669451摘要:電化學儲能科技與我們的生活息息相關。然而,傳統的儲能科技(例如電池和超級電容)有無法同時兼具高能量密度及高功率密度的缺點。主要的原因在於電池只利用了塊材的特性而超級電容只利用了材料表面的特性。為了解決這個根本的問題,本計畫提出人工混合導體的新概念並希望這樣的概念能為下一世代的儲能技術做出貢獻。 人工混合導體(或稱人工電極)是由奈米級的異質材料所構成,常見的組成結構為一離子導體及一電子導體。其儲能機制是將離子以及電子分別儲存在材料介面的空間電荷層中。由於開發人工電極的關鍵在於了解材料介面的功能特性,本計畫將特別關注物理及化學等基礎研究對於固態介面科學的影響。此外,本計畫也將著重於如何以工程的角度去優化材料的特性及研發相關的製程。 <br> Abstract: Electrochemical energy storage technologies, namely batteries and supercapacitors, have a long-standing dilemma: Batteries deliver large amount of energy but suffer from poor kinetics (i.e. high energy density but low power density); on the other hand, supercapacitors have fast kinetics but only deliver small amount of energy (i.e. high power density but low energy density). The origin of the dilemma is that energy storage processes require accommodating both ions and electrons in host materials. For batteries, the accommodation of ions and electrons is realized by exploiting the bulk phase of an electrode while, for supercapacitors, it is realized by utilizing the surface of an electrode. A way out of the dilemma of energy density and power density is decoupling the role of ions and electrons and storing them separately in the space charge zones of nanoscale heterogeneous materials. The heterogeneous materials refer to artificial mixed ion-electron conductors (or termed artificial electrodes) assembled from one ion conductor and one electron conductor. In this case, the thermodynamic and kinetic properties are controlled by the characteristic properties of space charge layers in the constituent materials. To fully explore and exploit the functionalities of artificial electrodes, it is crucial to understand the fundamentals of defect chemistry at interfaces. In addition, we aim to conceive design principles that enable developing the manufacture processes for artificial electrodes.電化學固態離子導體ElectrochemistrySolid state ionics玉山青年學者計畫