陽毅平臺灣大學:機械工程學研究所梁家源Liang, Jia-YuanJia-YuanLiang2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61040本研究目的為建構一符合混合動力車之驅動系統,並根據電動車輛的動力需求,規劃出一套最適合的控制策略,以提升車輛的整體動力性能。文中所研發的直驅式軸向磁通直流無刷馬達,由多目標函數最佳化軟體進行設計,再經有限元素分析加以驗證。為充份展現馬達性能,使用了三種策略,第一,以反電動勢作為驅動電流波形以得到最大的輸出力矩;第二,藉由馬達繞組串並聯的切換來滿足行車時低速與高速下不同的動力需求;最後,使用激磁相位超前角達到弱磁控制的效果,其定功率的操作使馬達的轉速範圍再一次得到延伸。此外,馬達驅動器的設計與硬體實現也是本研究的另一重要貢獻。為了考慮馬達在行車中高電壓、大電流及易控制的情形下,本研究採用絕緣閘雙極性電晶體作為驅動器之功率開關,完成四相獨立驅動電路設計。另外,藉由電子換檔模組使馬達在串並聯模式間的切換來滿足動力需求。本研究設計與製造的雙馬達雛形、驅動器和電子換檔模組已符合混合動力車要求之目標。Energy conservation and environmental protection are growing concerns in recent years, which have encouraged the development of various electric vehicles (EVs) or hybrid electric vehicles (HEVs). Many types of EVs have been developed and practically operated but not been comparable with gasoline-powered vehicles. Therefore, it is imperative to develop more efficient and reliable propulsion system for EVs and HEVs. The axial-flux sandwich-type dc brushless motor, featuring compactness, low weight, and high efficiency, have become an alternative for the propulsion system of EVs. This wheel motor is optimally designed to achieve a maximum torque and power output at 28 kg-m and 4.67 kW, respectively, and the efficiency over 90% at rated speed. In order to promote this dedicated motor to its excellence, the electric drive with IGBT inverters is designed and manufactured. In addition, the electronic gearshift and field weakening method are employed to increase the constant power and speed ranges. The contribution of this thesis encompasses the optimal design and fabrication of two wheel motors, their drives, electronic gearshift and an extension of driving pattern. These two wheel motors have been installed on an experimental vehicle, and are going to be implemented on a solar-fuel cell-powered hybrid electric vehicle.Contents I List of figure IV List of table VIII CHAPTER 1 INTRODUCTION 1 1-1 Overview 1 1-2 Review 5 1-3 Motivation 11 1-4 Thesis Organization 12 CHAPTER 2 PRINCIPLES OF AFPM MOTORS 15 2-1 Types of Axial Flux PM Motors 15 2-2 Magnetic Circuit Model 17 2.2.1 Magnetomotive Force Distribution 18 2.2.2 Air Gap Distribution 19 2.2.3 Torque Equations 21 CHAPTER 3 BRUSHLESS DC MOTOR DESIGN 23 3-1 Request and Estimation of Performance 23 3-2 Comparison with Different Slot-Pole Ratios 27 3.2.1 Geometric Parameters 27 3.2.2 Choice of Number of Slots and Poles 28 3.2.3 Summary 29 3-3 Optimization Analysis 30 3.3.1 Introduction of Optimization Analysis Software MOST 31 3.3.2 Flowchart of Multifunctional Optimal Design 33 3.3.3 Optimal Solutions 39 3-4 Finite Element Analysis and Verification 42 3.4.1 Analysis of Output Torque 44 3.4.2 Output Torque with Different Advanced Conduction Angles 47 3-5 Thermal Design and Analysis 49 3.5.1 Cooling System Design 50 3.5.2 Thermal Analysis 53 3-6 Materials and Fabrication 57 3.6.1 Materials 57 3.6.2 Fabrication 59 CHAPTER 4 ELECTRIC PROPULSION 61 4-1 Electric Drive 62 4.1.1 Full Bridge Circuit 62 4.1.2 Power Electronic Devices 64 4.1.3 Design and Realization 69 4-2 Core Controller 76 4.2.1 Configuration of Core Controller 77 4.2.2 Optimal Input Current Waveforms 82 4.2.3 Flux-Weakening Strategy 84 4-3 Electric Gearshift 86 4.3.1 Types and Configuration of Windings 86 4.3.2 Gearshift Strategy 90 4.3.3 Gearshift Module Realization 91 CHAPTER 5 EXPERIMENTAL IMPLEMENTATION 94 5-1 Exp. 1: Measurement of Back EMF Waveform 94 5-2 Exp. 2: Performance Test of Electric Motor 95 5-3 Exp. 3: Field Weakening Test 102 5-4 Exp. 4: Temperature Test 107 5-5 Experimental Equipments 109 CHAPTER 6 CONCLUSION AND FUTURE WORK 114 6-1 Conclusions 114 6-2 Future Work 116 BIBLIOGRAPHY 120 APPENDIX A 126 APPENDIX B 1273415117 bytesapplication/pdfen-US混合動力車軸向磁通無刷直流馬達功率晶體開關動力系統HEVaxial-fluxbrushless dc motorIGBTpropulsion system[SDGs]SDG7混合動力車推進動力系統之設計與開發Design and Development of Propulsion System for Hybrid Electric Vehiclesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61040/1/ntu-96-R94522824-1.pdf