2010-08-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/696976摘要:分散技術為 Bottom-Up 製程、自組裝、&#63756;米元件製備重要的關鍵步驟。本實驗室多&#63886;&#63789;致&#63882;於合成新式高分子分散劑及應用,包括層&#63994;天然矽土之插層與脫層技術。最近,我們發現一個重要的分散方法,命名為「幾何形態差&#63842;」分散法 (Geometric Shape In-Homogeneity, GSI)。並成功應用至&#63756;米碳管 (Carbon Nanotube, CNT) 與碳黑 (Carbon Black) 的分散 (發表於J. Phys. Chem. A, 2009, 113,8654) (J. Power Sources, 2006,163, 398)。CNT 的分散原&#63972;為的形成&#63847;可逆之&#63952;似微胞的微米結構(Micelle-Like Microstructure),即為油包水(W/O) 和水包油 (O/W) 的微米結構。碳黑則可被穩定分散至&#63756;米尺&#64001;,能應用於燃&#63934;電池的催化層,大幅提升催化效&#63841;。 本計劃將提出「幾何形態差&#63842;」分散法延伸至分散其他材&#63934;,包括疏水性共軛高分子、&#63847;溶之顏&#63934;、球&#63994;&#63756;米&#63754;屬&#63993;子等材&#63934;。並探討其分散效&#63841;、分散穩定性、分散後共軛高分子之螢光特性、顏&#63934;色&#64001;、&#63756;米&#63993;子大小等。另外,計畫中將&#63965;用此分散法製備銀&#63870;子點 (AgNPs Quantum Dots),並探討其形態與&#63870;子螢光效應的關係。本計劃擬以三&#63886;期間詳細探討「幾何形態差&#63842;」分散法及其應用於&#63756;米材&#63934;製備之通則,詳細計畫內容將各種&#63847;同矽土片徑和有機改質之層&#63994;矽土以分散共軛高分子、顏&#63934;、&#63756;米&#63754;屬&#63993;子&#63789;驗證「幾何形態差&#63842;」分散法之特殊性及共同性。並應用此方法以避開多餘有機物之 Quenching Effect 以製備“&#63870;子銀&#63993;子”之可&#64008;性,及其尺寸與&#63870;子效應之關係。計畫內容依三&#63886;可分述如下: 第一&#63886; 矽土「幾何分散」疏水性共軛高分子 探討各種層&#63994;矽土 (Mica, MMT, SWN, LDH, Laponite, Bentonite) 對三種共軛高分子 (LinearPolyphenylene Vinylene, Linear Sulfonated Polyaniline, Star-Like Sulfonated Polyaniline) 分散性的影響;再導入具有 Oxyethylene/Oxypropylene Backbone 之有機分子至層&#63994;矽土控制共軛高分子之分散性及物&#63972;性質;最後探討以高&#63978;子性、高長徑比與片&#63994;幾何型態之單片&#63994;矽土對共軛高分子分散性的影響。 第二&#63886; 矽土「幾何分散」&#63847;溶之&#63756;米有機顏&#63934;探討各種層&#63994;矽土 (Mica, MMT, SWN, LDH, Laponite, Bentonite) 對選擇之五種&#63756;米有機顏&#63934;(紅、&#63805;、&#63779;、黃、紫) 分散性的影響;再&#63965;用&#63847;同的 Polyamine-Salt 改質層&#63994;矽土控制&#63756;米有機顏&#63934;分散性,鑑定其幾何形態、色&#64001;及 UV-vis 性質;進一步探討有機顏&#63934;分散液的應用效果。 第三&#63886; 矽土「幾何分散」球&#63994;&#63756;米銀&#63993;子及應用於製備&#63756;米&#63754;屬&#63993;子材&#63934;探討各種層&#63994;矽土分散球&#63994;&#63756;米&#63754;屬&#63993;子 (Silver Nanoparticles),包括有機分子改質層&#63994;矽土、高&#63978;子性-高長徑比單片&#63994;矽土對&#63756;米&#63993;子分散的影響。目前文獻尚無 AgNPs Quantum Dot 或銀&#63870;子點的合成製備方法研究,計畫中將擬首創以另一&#63756;米材&#63934;&#63789;控制銀&#63870;子點合成,探討其尺寸與&#63870;子螢光性質的關係。&#63756;米&#63993;子間的自我排&#63900;也將是值得探討的課題之一。<br> Abstract: Dispersion technology is considered as the key step in Bottom-Up process, for self-assembling andfabricating nanomaterial devices. In our laboratories, we have devoted a great deal of efforts on the synthes is of new polymeric-type dispersants for various applications including the works involving exfoliation and intercalation of the layered clays. Recently, we have discovered an important dispersion phenomenon, namely Geometric Shape In-homogeneity (GSI) factor, enabling to disperse carbon nanotube (CNT) and carbon black as published in (J. Phys. Chem. A, 2009, 113, 8654) and (J. Power Sources, 2006, 163, 398). The principle for dispersing CNT is the formation of irreversible micelle-like microstructures, water-in-oil and oil-in-water types in micrometer size. The dispersion of carbon black is in nanoscale and applicable in catalytic layer of fuel cell, greatly increasing catalyst efficiency. In this project, the GSI will be further applied in dispersion of hydrophobic conjugated polymers, solvent-insoluble pigments and spherical metal nanoparticles including AgNPs. Both dispersion, dispersion stability, luminescence of conjugated polymers, color degree of pigment and size control of nanoparticles will be examined and characterized. Furthermore, we plan to use this new method for first preparation of silver quantum dots and examine the correlation between the shape and photo-luminescence effect. In this three-year project, we plan to study the GSI method in details and its broad applications in preparing various types of nanoparticles and perhaps their patterning and self-assembling. To generalize this GSI method for dispersing hydrophobic conjugated polymers, insoluble pigments and spherical metal nanoparticles will be studied involving the uses of layered silicates with various aspect-ratios and organically modified silicates. Furthermore, the silver nanoparticles will be prepared based on the GSI method and examine their possible quantum effect. The content of project is described as follow: The First Year: Generalization of GSI by Using Layered and Platelet Silicates to Disperse Hydrohpobic Conjugated Polymers The various silicates including Mica, MMT, SWN, LDH, Laponite, Bentonite will be used to disperse hydrohpobic conjugated polymers, such as linear polyphenylene vinylene, linear sulfonated polyaniline and star-like sulfonated polyaniline. The silicates will further be modified by polyamines with oxyethylene/oxypropylene backbone to control the dispersion behavior in hydrophilic and hydrophobic organic mediums and water. To realize the influence of high aspect ratio on dispersion, the nano silicate platelet will be correlated. &#65279; The Second Year: Generalization of GSI for Dispersing Insoluble Pigments The various silicates including Mica, MMT, SWN, LDH, Laponite, Bentonite will be used to disperse pigments, such as red, green, blue, yellow and violet pigments. The silicates will be further modified by different polyamines to tailor the dispersion behaviors. The light/color properties and applications of pigment pastes will be examined. The Third Year: Generalization of GSI for Dispersing Spherical Metal Nanoparticles and their Quantum Luminescence The various silicate clays will be used to prepare and disperse the spherical metal particles including silver nanoparticles. The silicates include different aspect-ratio of clay dimension, orgnaic modified and ionic clays with wide basal spacing of organic ion intercalation. The particle size, shape and dispersion stability will be examined. Furthermore, we plan to study the possibility of making Ag quantum dot materials and the relationship between particle size and silver quantum luminescence. Self-assemblies of these dispersed nanopartilce is another interesting topics that will be investigated.幾何分散法層&#63994矽土共軛高分子顏&#63934&#63756米&#63993&#63756米碳管Geometric DispersionLayered SilicatesConjugated PolymerPigmentNanoparticleCarbon Nanotube「幾何形態差異」分散法及其應用於奈米材料製備