陳瑤明臺灣大學:機械工程學研究所邱義善Chiu, Yi-ShanYi-ShanChiu2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61481微流道蒸發器具有單位體積內高熱傳面積的特性,以及核沸騰以及強制對流沸騰兩種熱傳機制,可達到高臨界熱通量、高熱傳係數、低工質需求量等優點。十分適合應用在高熱通量,以及對均溫性需求較高之電子冷卻場合,為一種具有前瞻性的微冷卻技術。 本研究成功建立了一套可靠的微流道散熱測試與實驗系統,進行沸騰熱傳實驗,並以燒結方式製作多孔性結構微流道進行熱傳增強。實驗工質為R-134a,操作壓力8bar,質量通率範圍222-464kg/m2s。微流道蒸發器由無氧銅塊構成,頂部平台以放電加工切割為62條225μm×660μm的矩形微流道;多孔性微流道蒸發器的頂部平台則以燒結方式構成62條210μm×660μm的矩形微流道,多孔性結構表面厚度96μm,孔隙度為54%,平均粒徑30μm。 實驗結果顯示,流動沸騰壓降主要受到質量通率與熱通量的影響,隨質量通率與熱通量的增加而增加;壓降預測方面,分離流模型較均質流模型適用於微流道的沸騰壓降預測,與實驗數據比對,平均絕對誤差最低可達10.6%。微流道中的沸騰熱傳機制可分為核沸騰區與強制對流沸騰區,在核沸騰區熱傳係數隨熱通量(乾度)的增加而增加,強制對流沸騰區的熱傳係數則隨乾度增加而減少,此二區的分界為熱傳係數的峰值,而此分界對應之乾度隨質量通率的增加而減少;熱傳係數實驗數據與考慮表面效應之經驗式相比,平均絕對誤差為13.6%。臨界熱通量與質量通率有關,隨質量通率增加而增加,實驗數據與前人經驗式比較,最低平均絕對誤差為2.6%。 熱傳增強方面,在相同體積流率167ml/min下,多孔性結構微流道蒸發器的熱傳係數提升2-3.8倍,臨界熱通量值亦增加了19-23%。Microchannles provide a large heat transfer surface area per unit flow volume. Phase change in microchannel evaporator makes it desirable for three reasons:(1) high critical heat flux (2) high heat transfer coefficient (3) low coolant flow rate. Therefore, they are well suited for high heat flux removal and high temperature uniformity cooling applications. Present research successfully established a reliable microchannel evaporator experimental system to investigate heat transfer behavior in microchannels and enhance heat transfer performance by sintered porous structure. The working liquid used is refrigerant R-134a, operating pressure is 8 bar, and mass flux ranges from 222 to 464kg/m2s. The microchannel evaporator was fabricated from oxygen-free copper, and top platform was cut to form 62 parallel rectangular 225μm×660μm microchannels. The top platform of porous microchannel evaporator was sintered to form 62 parallel rectangular 210μm×660μm microchannels. The thickness of porous surface structure is 96μm, and the porosity is 54%. The average particle size is 30μm. The results reveal that flow boiling pressure drop is primarily affected by mass velocity and heat flux, which increases with increasing mass velocity and heat flux. The predictability of separated flow model is much better than homogeneous equilibrium model on flow boiling pressure drop in microchannel, and the lowest MAE is 10.6%. Flow boiling in microchannel can be classified either as boiling-dominated region or convection-dominated region. In boiling-dominated region, the heat transfer coefficient increases with increasing heat flux. In convection-dominated region, the heat transfer coefficient decreases with decreasing vapor quality. These two region are separated by the peak value of heat transfer coefficient, and this separation will change if mass velocity differs. The heat transfer data closely match with some previous correlations, and the lowest MAE is 13.6%. The critical heat flux is primarily affected by mass velocity, which increases with increasing mass velocity. The CHF data also closely match with some previous correlations, and the lowest MAE is 2.6%. As for heat transfer enhancement, in the same volume flow rate 167 ml/min, the heat transfer coefficient and CHF of porous microchannel evaporator is enhanced by 2-3.8 times and 19-23% respectively.誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號表 ix 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1巨-微尺度過渡 3 1.2.2流動沸騰壓降 5 1.2.3流動沸騰熱傳 6 1.2.4臨界熱通量 13 1.2.5熱傳增強 14 1.3研究目的 15 第二章 實驗設備與方法 17 2.1實驗迴路 17 2.2測試段模組 17 2.3實驗方法 23 2.3.1流動沸騰壓降 23 2.3.2流動沸騰熱傳 25 2.3.3臨界熱通量 27 2.4實驗步驟 28 2.5誤差分析 29 第三章 流動沸騰壓降 33 3.1兩相壓降模型 33 3.1.1均質流模型 33 3.1.2分離流模型 37 3.1.3多孔性結構微流道蒸發器之流動沸騰壓降 41 第四章 流動沸騰熱傳 43 4.1沸騰曲線 43 4.2沸騰熱傳係數 47 4.3沸騰熱傳係數經驗式 51 第五章 臨界熱通量 55 5.1沸騰曲線 55 5.2鄰近臨界熱通量的不穩定性 56 5.3臨界熱通量的特性 59 5.4臨界熱通量經驗式 59 第六章 結論與建議 63 6.1結論 63 6.2建議 64 參考文獻 65 附錄 76 圖目錄 Fig.1.1電子晶片散熱通量發展趨勢圖 2 Fig.1.2 Active Microchannel Cooling(AMC)示意圖 3 Fig.1.3核沸騰熱傳機制示意圖 7 Fig.1.4強制對流沸騰熱傳機制示意圖 7 Fig.2.1實驗迴路示意圖 18 Fig.2.2測試段模組 19 Fig.2.3多孔性微流道蒸發器示意圖 20 Fig.2.4微流道蒸發器控制體積單元 25 Fig.2.5加熱面平均熱通量示意圖 27 Fig.3.1 R-134a壓降實驗數據與各學者均質流模型預測之比較 35 Fig.3.2 R-134a壓降實驗數據與各學者分離流模型預測之比較 39 Fig.3.3微流道流動沸騰壓降曲線圖 41 Fig.3.4微流道與多孔性結構微流道之流動沸騰壓降比較 42 Fig.4.1沸騰曲線圖 43 Fig.4.2微流道蒸發器與多孔性結構微流道蒸發器之沸騰曲線圖 46 Fig.4.3沸騰熱傳係數對乾度變化圖 48 Fig.4.4水與FC-72氣泡脫離直徑比較 48 Fig.4.5熱傳係數峰值變化示意圖 50 Fig.4.6微流道蒸發器與多孔性結構微流道蒸發器之沸騰熱傳係數比較 50 Fig.4.7沸騰熱傳係數實驗數據與Lee and Mudawar(2005)經驗式之比較 54 Fig.5.1微流道蒸發器與多孔性結構微流道蒸發器之沸騰曲線圖(CHF) 55 Fig.5.2 Parallel Channel Instability在接近CHF時造成氣體回衝示意圖 56 Fig.5.3鄰近CHF微流道蒸發器的出口壓力震盪 57 Fig.5.4多孔性結構微流道蒸發器的出口壓力震盪 58 Fig.5.5入口溫度對有效熱通量變化圖 58 Fig.5.6 CHF對質量通率變化圖 60 Fig.5.7微流道蒸發器CHF實驗數據與各學者經驗式之比較 61 Fig.A-1熱電偶校正曲線圖 76 Fig.B-1壓力感測器校正曲線圖 78 Fig.D-1系統實體圖 80 Fig.D-2測試段實體圖 80 Fig.D-3微流道實體圖 81 Fig.D-4微流道蒸發器實體圖 81 Fig.D-5多孔性結構微流道蒸發器實體圖 81 表目錄 Table 1.1迷你/微流道沸騰熱傳文獻摘要 8 Table 1.2被動式與主動式增強熱傳方法比較 14 Table 2.1微流道蒸發器控制體積單元尺寸 26 Table 2.2沸騰熱傳實驗操作情況 28 Table 3.1常用兩相混合黏度模型 34 Table 3.2分離流模型摩擦壓降經驗式 38 Table 4.1流動沸騰熱傳係數預測模型 52 Table 4.2 Lee and Mudawar(2005)沸騰熱傳係數經驗式 53 Table 5.1 R-134a矩形微流道蒸發器CHF實驗數據 59 Table 5.2飽和態流動沸騰CHF經驗式 60 Table C-1誤差分析表 792179120 bytesapplication/pdfen-US微流道沸騰熱傳多孔性結構熱傳增強microchannelflow boilingporoussintered微流道蒸發器之熱傳研究Investigation of Heat Transfer on Microchannel Evaporatorthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61481/1/ntu-96-R94522113-1.pdf