2014-08-012024-05-14https://scholars.lib.ntu.edu.tw/handle/123456789/659312摘要:近年來腎細胞癌的發生率逐年增加,腎細胞癌無明顯的危險因子,病人的自覺症狀亦不明顯,因此瞭解腎細胞癌之危險因子是項刻不容緩的課題。無機砷是環境中重要的致癌物,目前許多的癌症已經被證實與砷的暴露有關,包含像是肺癌、皮膚癌、膀胱癌以及腎臟癌。最近我們的研究發現,即使是在非明顯砷暴露地區,腎細胞癌的病患其尿液中的總砷濃度仍較對照組高;然而,至今探討砷甲基化代謝能力與腎細胞癌的相關研究甚少,因此,砷誘發腎細胞癌之致癌機轉至今尚未釐清。無機砷致病可能的機轉是促使體內氧化壓力的上升;從我們的另外一項研究也證實,腎細胞癌的病患尿液中的DNA 損傷產物8-Hydroxydeoxyguanine(8-OHdG)也顯著比健康對照者較高。而氧化壓力所造成DNA 傷害,修復酵素基因可能在其中扮演重要的角色,因此腎細胞癌的發生風險和臨床預後可能會受到修復酵素基因的遺傳變異差異所影響。氧化壓力能誘導體內發炎因子及細胞激素上升,例如:腫瘤壞死因子(TNF-α)、介白素(IL-6、IL-8)等,進一步誘發體內的發炎反應。過去研究已證實這些發炎因子在腫瘤的發生和進展扮演著重要角色、而慢性發炎也被證明會促進腫瘤的發生,所以腎細胞癌的發生風險和臨床預後可能會受到發炎因子基因的遺傳變異差異所調控。本研究的主要在探討非砷暴露地區居民,砷甲基化代謝能力、氧化傷害指標8-OHdG、修復酵素與發炎因子之基因多形性與腎細胞癌的發生以及臨床表徵及預後的關係,目的如下:1. 闡明氧化傷害指標尿液 8-OHdG 濃度與各砷甲基化代謝能力指標與腎細胞癌的危險性以及腎細胞癌病人腫瘤轉移、復發和手術後存活關係。2. 探討 DNA 修復酵素(MGMT、XPD、XRCC1 與XRCC3)之基因多形性以及不同MGMT、XPD、XRCC1 基因單體型是否影響氧化傷害尿液8-OHdG 濃度與腎細胞癌的危險性以及腎細胞癌病人腫瘤轉移、復發和手術後存活關係。3. 瞭解 IL-6、IL-8 和TNF-α 之基因多形性以及不同IL-6 基因單體型是否影響氧化傷害尿液8-OHdG 濃度與腎細胞癌的危險性以及腎細胞癌病人腫瘤轉移、復發和手術後存活關係。4. 檢定腎細胞癌危險性相關之環境因子與環境因子、基因與環境因子以及基因與基因間之交互作用本研究擬進行為期三年的計畫。第一年持續收集腎細胞癌病患以及健康對照組的問卷、血液以及尿液,抽取DNA 進行將來基因多形性的分析,並進行尿液中砷物種以及8-OHdG的測定。在既有的研究基礎之下,擴大樣本數以降低過去樣本數較小時所可能造成的抽樣誤差。第二年將建立DNA 修復酵素(MGMT、XPD、XRCC1 與XRCC3)基因多形性的分析條件進行研究對象的樣本分析,並持續針對新收個案分析其尿液中砷物種以及8-OHdG。第三年將建立發炎因子IL-6、IL-8 和TNF-α 基因多形性的分析條件進行研究對象的樣本分析,並持續針對新收個案分析其尿液中砷物種、8-OHdG 及DNA 修復酵素基因多形性。最後整合三年的數據,將研究對象外在環境暴露、內在劑量及易感性基因結合一起,進行各項分析。表C011 共4 頁 第2 頁預期能闡明尿液砷物種濃度及8-OHdG 濃度、DNA 修復酵素與發炎因子等基因多形性與腎細胞癌之相關性並探討環境因子與環境因子、環境因子與基因及基因與基因對腎細胞癌發生及預後的交互作用。最後將撰寫研究報告及準備投稿在知名的期刊雜誌。<br> Abstract: The incidence of renal cell carcinoma (RCC) increased year by year, because RCC withoutobvious risk factors, it is difficult to aware of the disorder. To understand risk factors for RCC is amajor issue. Inorganic arsenic is an important environmental carcinogen; many cancers have beenlinked to arsenic, such as lung cancer, skin cancer, bladder cancer, and RCC. Our recent studyfound that even in the area without obvious arsenic exposure, total arsenic level in patients withRCC were higher than non-RCC control; but whether arsenic methylation capability is related ornot still remains unclear. One of the possible mechanisms that arsenic pathogenic is to promoteoxidative stress; in our previous study also demonstrated that RCC patients had higher8-Hydroxydeoxyguanine (8-OHdG) than non-RCC control which can reflect DNA damage byoxidative stress. The DNA repair enzyme gene may play an important role between oxidativestress and DNA damage. Therefore, the risk and prognosis of RCC may be influenced by thegenetic variation of DNA repair enzyme. Oxidative stress can induce inflammatory cytokines suchas tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8). Previous studies havedemonstrated that these inflammatory factors play an important role in the onset and progressionof tumors, and chronic inflammation has also been shown to promote tumorigenesis. Therefore therisk and prognosis of RCC may be affected by the genetic variation of inflammatory factor.This study is mainly to investigate the relationship between arsenic methylation capability,8-OHdG, polymorphisms of gene repair enzymes and inflammatory factors on RCC in an areawithout obvious arsenic exposure, therefore the specific aims of this project are:1. To explore the relationship between arsenic methylation capability and 8-OHdG on therisk of RCC and tumor recurrence, metastasis, and survival.2. To investigate the relationship between DNA repair enzymes (MGMT, XPD, XRCC1, andXRCC3) gene polymorphism and 8-OHdG or between DNA repair enzymes and RCCrisk and tumor recurrence, metastasis, and survival.3. To investigate the relationship between IL-6、IL-8, and TNF-α gene polymorphism and8-OHdG or between IL-6、IL-8, and TNF-α gene polymorphism and RCC risk and tumorrecurrence, metastasis, and survival.4. To examine the risk factors of the environment-environment, gene-environment, andgene-gene interaction on the risk of RCC.This project is a three-year prospective study. The first year will use established highperformance liquid chromatography linked hydride generator and atomic absorption spectrometrymethod to examine the urinary arsenite, monomethylarsonic acid, dimethylarsinic acid, andarsenate and then analysis of urinary 8-OHdG by isotope-dilution liquid chromatography-tandem表C011 共4 頁 第4 頁mass spectrometry with on-line solid-phase extraction for newly recruited subjects. To expand thenumber of samples under the existing database to reduce bias. Secondly, we will set up the methodof DNA repair enzymes (MGMT, XPD, XRCC1, and XRCC3) genetic polymorphism and analyzethese markers. We will also continue to analyze the urinary arsenic species, 8-OHdG of newlyrecruited study subject. The third year, we will set up the method of IL-6, IL-8, and TNF-α genepolymorphism and analyze these markers. We will also continue to analyze the urinary arsenicspecies, 8-OHdG and DNA repair enzymes genotypes of newly recruited study subject. Finally, wewill incorporate all data to perform statistical analyses. We anticipate elucidating the relationshipamong arsenic methylation capability, 8-OHdG, polymorphism of DNA repair enzymes andinflammatory factors and RCC risk. In addition, we will also examine the risk factors of theenvironment-environment, gene-environment, and gene-gene interaction on the risk and prognosisof RCC. The findings from these three years projects are expected to publish in internationallyjournals.砷甲基化代謝能力8-OHdGDNA 修復酵素發炎因子腎細胞癌Arsenic Methylation Capability8-OHdGDNA Repair EnzymesInflammatory GeneRenal Cell CarcinomaStudy on the Association of Urinary Arsenic Profile, Polymorphisms of DNA Repair Genes, Polymorphisms of Inflammation Genes and Renal Cell Carcinoma---From Cancer Development to Recurrence, Metastasis, and Survival