郭宇軒Kuo, Yu-Hsuan臺灣大學:電子工程學研究所張哲瑋Chang, Che-WeiChe-WeiChang2010-07-142018-07-102010-07-142018-07-102008U0001-1607200800101600http://ntur.lib.ntu.edu.tw//handle/246246/189047現今中、長程通訊,光已經取代了電的地位,在短程通訊光也逐漸取代電的傳輸,但在晶片連結中,仍以電訊號作為主流。自從半導體技術的進步,元件尺寸逐漸縮小,導線電阻增加,而晶片內部連結延遲時間逐漸縮小,因此主要是晶片與晶片之間的連線速度掌握了整個系統的速度,光連線是解決現今矽晶片之間與晶片內部高速通訊瓶頸之必要方案之一,有機會成為未來高速、高容量資訊通訊技術之關鍵。速外加光調變器(external modulator)為現今光通訊之重要元件。電制吸收光調變器由於在應用上具備有高速調變、低驅動電壓,非常適合外部調變的高頻寬光通訊系統。量子侷限史塔克效應(Quantum confined Stark effect; QCSE) 為最有效之光調變器原理之一,矽基材料上矽鍺量子井已被證實存在量子侷限史塔克效應。論文將探討矽鍺寬量子井上之量子侷限史塔克效應。因矽鍺為非直接能隙之材料,除直接能隙之吸收外,亦可在更低能量處發現非直接能隙之吸收,此部分將導致背景吸收。為量測矽鍺量子井之電制吸收元件,搭建電制吸收效應之量測系統,研究厚量子井設計所獲之量子侷限史塔克效應以及直接能隙吸收和非直接能隙吸收對於吸收頻譜之影響,厚量子井有不若薄量子井之吸收係數、激子效應以及較低之非直接能隙吸收。此外,利用穿隧共振法進行數值模擬與探討。Optical communications have dominated the intermediate to long distance data transmission and also gradually replaced the metal interconnects for the short-distance links. The decreasing device size in silicon chips increases the interconnect resistance and hence degrades the system speed severely, thus the optical interconnects is one of the solutions to enable high-speed and high-capacity chip-scale communication technology.he high-speed external optical modulator is one of the key components routinely used in today’s optical communications. The Quantum confined stark effect (QCSE) – one of the most effective modulator operating theorems – can enable high-speed external modulation with low operation voltage. The QCSE had been demonstrated in the germanium quantum well system grown on silicon and would enable optical interconnects integrated with silicon chips.he QCSE at room temperature with thick quantum well was investigated in this thesis study. Since both silicon and germanium are indirect bandgap materials, there exist not only direct gap absorption transition but also indirect gap absorption with lower transition energy which leads to the background absorption. An electro-absorption measurement system was setup to study the QCSE as well as the direct and indirect absorption. The thick quantum well structure exhibits electroabsorption effect in the C-band and has lower quantum well energy, weaker exciton, and less indirect absorption. Besides, the simulations based on the tunneling resonance method are discussed.目錄謝 ...............................................................I要(中文摘要) ...................................................II要(英文摘要) ...................................................III錄 ..............................................................IV目錄 ............................................................VI目錄 ..........................................................VIII一章 緒論 .......................................................1.1 引言-為何需要光連結 .......................................1.2 研究動機、目的 ............................................4 .3 文獻回顧 ..................................................7.4 論文架構 .................................................10二章 矽鍺量子井元件製作與原理...................................11.1. 載子躍遷..................................................11.2. 激子 .....................................................12.3. 量子井物理................................................13.4. 矽鍺層應力 ...............................................16.5. 量子侷限史塔克效應 .......................................19.6. 量子井光調變器設計參考因素 ...............................21三章 實驗規劃 ..................................................22.1. 實驗元件 .................................................22.2. 實驗設備 .................................................24.3. 實驗環境架設流程 .........................................26.4. 資料採樣方法 .............................................27.5. 程式規劃及實驗操作流程 ...................................28四章 模擬模型建立 ..............................................32.1 共震穿隧模型介紹 .........................................32.2 應力之修正 ...............................................34.3 矽鍺比例修正 .............................................37五章 實驗結果與討論 ............................................40.1 光吸收頻譜分析 ...........................................40.2 模擬結果與實驗結果比較 ...................................43六章 結論 ......................................................46.1 結論 .....................................................46.2 未來展望 .................................................47考文獻 ..........................................................48目錄1.1 延遲時間對連線寬度作圖 ......................................21.2 光訊號與電訊號之訊號延遲偏差比較 ............................31.3 啾頻係數與傳輸容量關係圖 ....................................51.4 矽鍺電制吸收光調變器吸收頻譜 ................................71.5 世界第一顆利用量子侷限史塔克效應之光調變器 ..................81.6 半導體吸收曲線圖 ............................................92.1 砷化鎵在不同溫度下的吸收頻譜 ...............................122.2 量子井內波函數分佈 .........................................142.3 miniband示意圖 .............................................152.4 量子井量子化吸收係數 .......................................152.5 矽(a)及砷化鎵(b)之能帶圖 ...................................162.6 為矽鍺層磊晶於純矽之臨界厚度對磊晶層鍺濃度作圖 .............172.7-1 受到伸張力影響之能帶圖 (未按照比例) ....................182.7-2 受到壓縮力影響之能帶圖(未按照比例)......................182.8 電場和GaAs量子井平行時之吸收頻譜 ..........................192.9 電場和GaAs量子井垂直時之吸收頻譜 ..........................202.10 電子電洞波函數分佈呈現分離錯位 ............................203.1 15nm 鍺量子井之矽鍺pin元件結構 ............................223.2 一般pin結構與本論文元件架構差別示意圖 ......................233.3 受到應力影響之矽鍺量子井能帶示意圖 .........................233.4 Bias-T示意圖 ...............................................253.5 量測系統簡圖 ...............................................263.6 使用者介面 .................................................283.7 設定輸入參數 ...............................................293.8-1 雷射波長操作程式流程圖 ...................................293.8-2 雷射功率操作程式流程圖(改變波長) .........................303.8-3 雷射功率操作程式流程圖(維持固定波長) .....................304.1 簡單量子井結構分割區塊示意圖 ...............................324.2 在第m層之波動方程式 ....................................334.3 不同原因對於能帶變化之示意圖 ...............................354.4-1 矽鍺量子井之e-HH能帶對電場之反應模擬 ....................384.4-2 矽鍺量子井之e-LH1能帶對電場之反應模擬 ...................395.1 量子侷限史塔克效應量測結果-吸收光譜對外加電壓之變化 ........425.2 不同偏壓下吸收係數比之光譜 .................................435.3 無偏壓下有效吸收係數0.5次方之光譜 .........................455.4 無偏壓下有效吸收係數平方之光譜 .............................45目錄2.1 量子井光調變器設計參考因素 .................................213.1 取樣失真影響因素 ...........................................274.1 應力修正係數 ...............................................372245599 bytesapplication/pdfen-US量子侷限史塔克效應光調變器矽鍺量子井電制吸收光電元件QCSEOptical modulatorSiGe quantum wellElectroabsorption矽鍺電制吸收元件之量子侷限史塔克效應Quantum Confined Stark Effect (QCSE) in Silicon-Germanium (SiGe) Electro-Absorption Devicesthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/189047/1/ntu-97-R95943046-1.pdf