劉懷勝Liu, Hwai-Shen臺灣大學:化學工程學研究所林右晨Lin, You-ChenYou-ChenLin2010-06-302018-06-282010-06-302018-06-282009U0001-2207200918395100http://ntur.lib.ntu.edu.tw//handle/246246/186945蛋白質進行復性程序前需先進行變性溶解的步驟,故在進入復性程序時,變性程序中所存在的各種藥劑會一起進入復性系統中,對於復性結果產生影響。96孔盤活性測試具有可快速且大量獲得溶菌酶活性的優點,因此,本實驗經由直接稀釋法進行溶菌酶的復性,並搭配96孔盤活性測試(0.8g/L的基質,10秒/90秒的測量時間,基質對於溶菌酶之體積比例為200μL比10μL,待測溶菌酶濃度0.01g/L~0.1g/L),探討變性程序中還原態二硫代蘇糖醇(DTTRed)的殘留對於溶菌酶復性所造成之影響,也由復性程序中尿素濃度的改變,探討復性環境中尿素濃度對於溶菌酶性活性回復率之影響。小排阻層析法(Size Exclusion Chromatography,SEC)可測出溶菌酶與DTTRed進行變性24小時後所殘留之DTTRed,只要知道初始DTTRed與初始溶菌酶濃度(Lyi),即得知氧化態DTT(DTTOxi)濃度而進一步算出殘留之DTTRed。在直接稀釋法結果中,溶菌酶之活性回復率隨著殘留DTTRed濃度不同呈現三種趨勢:(a)氧化還原對控制區 (b)聚集體控制區 (c)殘留DTTRed控制區,調整各控制區內的最大影響因子即可使得活性回復率提升。活性回復率與溶菌酶的濃度為反比關係,加入尿素可有效減少聚集體並提升活性回復率,1M尿素使得最終復性溶菌酶小於0.16g/L時有80%以上之活性回復率;2M尿素使得最終復性溶菌酶小於0.5g/L時有75%以上之活性回復率;3M尿素所提供之疏水性作用力過多,但可有效提升1g/L以上最終復性溶菌酶的活性回復率。實驗結果顯示,聚集體形成極快,變性溶菌酶接觸復性液瞬間就有可能因聚集體的產生降低活性回復效果,當最終尿素濃度為1M且初始變性溶菌酶高於10g/L時,初期聚集體的量使得活性回復率下降;最終尿素濃度為2M時,只要初始尿素濃度大於1.76M,初始變性溶菌酶在25g/L以下,復性初期形成的聚集體不會對活性回復率產生影響。Before the renaturation process, proteins need to be denatured and dissolved. Thus, when entering renaturation process, the denaturing chemicals are carried over into the refolding system and affected the performance of renaturation process. In this investigation, we used the direct dilution method to refold lysozyme, and measured the activity recovery by an efficient 96 well microplate method (0.8g/L Micrococcus lysodeikticus, 10s/90s measuring time, substrate and lysozyme volume ratio of 200μl and 10μl, for the lysozyme concentration range 0.01g/L~0.1g/L.). We examined the effect of the carried-over DTTRed from the denaturation process on the refolding performance. The effect of urea on the refolding of lysozyme was also explored by varying the concentration of urea in the refolding condition.ize exclusion chromatography (SEC) was applied to determine the carried-over DTTRed after lysozyme denaturation. With the initial concentration of DTTRed and lysozyme(Lyi), we could calculate the concentration of DTTOxi by the equation , and accordingly the concentration of the carried-over DTTRed. From the results of direct dilution method, the relationship among lysozyme activity recovery, lysozyme concentration, and carried-over DTTRed concentration could be divided into three regions including the redox control region, aggregate control region, and DTTRed control region. An improvement in the activity recovery could be achieved through the proper regulation of the contributing factors in each region. Generally speaking, the activity recovery was inversely proportional to the lysozyme concentration and the addition of urea could reduce the aggregation. 1M of urea helps to recover the activity of lysozyme up to final concentration of 0.16g/L with more than 80% yield. 2M of urea could recover the enzyme activity up to 0.5g/L with the yield more than 75%. Although 3M of urea resulted in stronger hydrophobic interaction, it could still recover the activity of lysozyme of final concentration more than 1g/L efficiently. According to our experimental results, the rapid formation of aggregates would occur as soon as the denaturated lysozyme was in contact with the refolding buffer. With 1M of final concentration of urea and 10g/L of initial concentration of lysozyme, the amount of initial aggregates would lead to a reduction in activity recovery. However, a better inhibition of initial aggregate formation was observed when the final concentration of urea was 2M and initial concentration of urea was above 1.76M. We believe our work may contribute to a better design of protein refolding processes.致謝 I要 IIbstract III目錄 VIII目錄 XIII一章 緒論 1二章 文獻回顧 2-1 蛋白質功能及組成 2-2 穩定蛋白質結構之作用力 8-3 溶菌酶(LYSOZYME) 12-3-1 溶菌酶簡介 12-3-2 溶菌酶的結構 14-3-3 溶菌酶之活性 18-4 蛋白質變性 19-5 蛋白質復性 22-5-1 蛋白質復性與雙硫鍵形成 25-5-2 蛋白質復性與聚集體形成 26-6 蛋白質復性方法 28-6-1 直接稀釋法(direct dilution) 28-6-2 透析法(dialysis) 35-6-3 大小排阻層析法(size exclusion chromatography,SEC) 36-6-4 逆微胞法(reverse micells) 37-7 二硫代蘇糖醇(dithiothreitol,DTT) 39三章 實驗裝置、藥品與步驟 42-1 實驗裝置 42-2 實驗藥品 42-3 實驗步驟 44-3-1 【實驗試劑備製步驟】 44-3-2 【96孔盤測活性】 45-3-3 【溶菌酶之活性測定】 45-3-4 【溶菌酶之變性】 46-3-5 【直接稀釋法復性溶菌酶於二小時內之活性變化】 47-3-6 【復性緩衝液存放時間對復性效果的影響】 47-3-7 【失活步驟中隨時間測量溶菌酶之殘餘活性】 48-3-8 【氧化態DTT校正曲線】 48-3-9 【DTT殘留測試】 48-3-10 【直接稀釋法實驗】 49四章 實驗動機與目的 52五章 96孔盤活性測量 54-1 微量盤式分析儀與分光光譜儀燈光照射方式比較 54-2 微量盤式分析儀與分光光譜儀體積比較 55-3 微量盤式分析儀與分光光譜儀溶液混合方式比較 56-4 基質濃度調整 56-4-1 長時間測量 57-4-2 增加基質濃度 60-4-3 縮短測量活性的時間 62-5 活性測量結論 64-6 測量活性之方法尋找 64六章 直接稀釋法 66-1 直接稀釋法於兩個小時內之活性變化 66-1-1 實驗動機 66-1-2 實驗方法 66-1-3 實驗結果與討論 66-2 復性緩衝液放置時間對復性效果之影響 69-2-1 實驗動機 69-2-2 實驗方法 69-2-3 實驗結果與討論 69-3 失活步驟中隨時間測量溶菌酶之殘餘活性 70-3-1 實驗動機 70-3-2 實驗方法 71-3-3 實驗結果與討論 71-4 還原態DTT殘留測試 74-4-1 實驗動機 74-4-2 實驗方法 75-4-3 氧化態DTT濃度校正曲線 75-4-4 變性24小時後之DTT殘留 78-4-4-1 大小排阻層析法測量變性溶菌酶液中氧化態DTT含量 78-4-4-2 氧化態DTT含量經驗式分析 81七章 殘留還原態DTT與尿素對溶菌酶復性之影響 85-1 實驗動機 85-2 實驗方法 85-3 實驗結果與討論 85-3-1 試劑名稱與代表符號 85-3-2 50倍直接稀釋法、最終尿素濃度1M時殘留還原態DTT與活性回復率之關係 86-3-2-1 氧化還原對控制區 88-3-2-2 聚集體控制區 92-3-2-3 殘留還原態DTT控制區 97-3-3 50倍、30倍、20倍、10倍直接稀釋法於最終尿素濃度1M時殘留還原態DTT與活性回復率之關係 100-3-4 50倍、30倍、20倍、10倍直接稀釋法於最終尿素濃度1M、2M、3M時殘留還原態DTT與活性回復率之關係比較 105-3-5 尿素對溶菌酶復性的影響 109-3-5-1 1M最終尿素對溶菌酶復性之影響 110-3-5-2 2M最終尿素對溶菌酶復性之影響 123-3-5-3 3M最終尿素對溶菌酶復性之影響 132-3-6 復性劑中未加入尿素 135八章 結論 137九章 參考文獻 1404460323 bytesapplication/pdfen-US溶菌酶尿素變性復性直接稀釋法dithiothreitol(DTT)lysozymeureadenaturationrefoldingdirect dilution method殘留之二硫代蘇糖醇與尿素對溶菌酶復性之影響The Effect of Dithiothreitol Carry-over and Urea on Renaturation Procedure of Lysozymethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/186945/1/ntu-98-R96524049-1.pdf