林祥泰臺灣大學:化學工程學研究所柯皇竹Ko, Huang-ChuHuang-ChuKo2007-11-262018-06-282007-11-262018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/52343自從1991年在日本的飯島博士成功發現並製造了奈米碳管[1, 6]以來,其相關的各種性質及應用形成一股新興的研究熱潮[2, 7, 8]。由於碳管以奈米尺寸合成,其表面的性質會因為尺寸微縮而改變有顯著的不同。因此,結構相似於石墨的奈米碳管在機械、導電性質有相當不錯的應用空間。應用奈米碳管的高比表面積,可以提高電容器電極板上的有效利用面積,更可加強在電極表面電荷對電雙層內的溶液的影響。這種應用奈米碳管改良的電容器一般稱作超級電容器[3, 4, 9],其單位重量的電容率約為目前市面固態電容器的數千倍以上(達102 farads/g)。本研究應用分子動態模擬來模擬出在奈米尺寸下,各種不同參數的奈米碳管對電解質溶液的介電常數的影響,並以獲得的電解質溶液的介電值可以得出其理想電容器的電容值。也希望籍此來深入了解在微小尺寸下電雙層內外的溶液分子的各種表現。Since Iijima[1] successfully fabricated carbon nanotube (CNT) from graphitic carbon sheets in 1990, all kinds of physical, chemical and mechanical properties are being studied and analyzed[2]. Recently, a new model of electrochemical storage device was introduced. Based on the ordinary electrolytic capacitor, the CNT were bed on the original electrode plate. The so-called supercapacitor[3, 4] (SC) has more than thousand times of capacitance than commercial ones[5]. The enhancement in capacitance was recognized by two major effects: the increase of surface on the electrode and the capture of ionic species by the CNT. In order to gain a molecular level understanding of each of these effects, we have established the micro structure of SC and performed molecular dynamic simulation (MD) for such systems. At the same time, we could study the phenomena in electrical double layer and solvent.目錄 Abstract V 摘要 VI 第一章 序論 1 1.1 能源儲存的重要 1 1.2 電化學液態電容器 1 1.3 超級電容器 2 1.4 奈米碳管 2 1.5 外加電場對極性分子的飽和現象 5 1.6 本研究動機 6 第二章 理論 7 2.1 分子動態模擬 (Molecular Dynamic Simulation) 7 2.2 位能,作用力與力場參數 8 2.3 由分子動態模擬結果計算電容器內電場分佈 11 2.4由分子動態模擬結果計算電容器內電位分佈 13 2.5 由外加電場及平均電場計算介電係數 13 2.6 由分子動態模擬結果計算電容率 14 2.7 以Poisson-Boltzmann 方程式計算電場丶電位與電容率 14 2.8 介電係數隨外加電場之變化: Langevin-Debye理論 17 2.9 介電係數隨外加電場之變化: modified Langevin-Debye 理論 18 第三章 模擬計算細節 20 3.1 Method 20 3.2 LAMMPS 20 3.3 Accelrys Cerius2 20 3.4 建立微觀結構 22 3.5 極板上外加的電場 24 3.6 在LAMMPS上進行MD模擬 27 第四章 結果 29 4.1 各模擬的原子, 電場及電位分佈 29 4.1.1純水系統 29 4.1.2 電解質溶液(NaCl)系統: 外加電場影響 35 4.1.3 電解質溶液(NaCl) :濃度效應 46 4.1.4極板加入奈米碳管之電容器:純水系統 46 4.1.5極板加入奈米碳管之電容器: 電解質溶液(NaCl)系統 48 4.1.6 不同奈米碳管之影響 50 4.1.7由電場計算的介電常數與Langevin-Debye 理論值比較 52 4.2 電容率計算 53 4.2.1由能量決定電容器放電程序 53 4.2.2 兩極板電位差值表 55 4.2.3 電容率計算 56 4.3 結構討論 60 4.3.1 各模擬RDF圖 60 4.3.2 在高電場時的類冰結晶圖 64 第五章 結論 66 第六章 附錄 672797558 bytesapplication/pdfen-US分子動態模擬介電常數電容率Molecular Dynamic Simulationdielectric constantcapacitance以分子動態模擬預測液態電容器之電容率Computer Simulation for Prediction Capacitance of Electrical Double layer capacitorthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52343/1/ntu-96-R94524066-1.pdf