2023-11-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/653888該研究提案概述了一項綜合研究,旨在將金屬有機框架(MOF)整合到塑膠和紙基混合微/奈米流體中,以實現先進的生物醫學感測和診斷。 透過將 MOF 的獨特性質與微流體系統的多功能性相結合,本研究的目標是設計和開發能夠以高靈敏度和特異性檢測生物標記的通用平台技術。 儘管基於紙的微/奈米流體學已被廣泛研究,但紙的結構完整性極大地限制了圖案化,從而限制了流體操縱的最終幾何形狀。 因此,可以設計將低成本疏水性塑膠作為基底整合到基於紙張的特殊幾何圖案上,以形成高效的奈米通道。 這裡,具有固有毛細管效應的紙基奈米通道將有助於流體傳輸,而疏水性塑膠基底將確保優異的機械/結構完整性,同時確保定向流動。 此外,MOF 出色的催化性能和多孔形態可用於開發有效的介體,以控制產生的活性氧的數量,用於癌症治療、傷口癒合等應用,並設計分析物特異性催化猝滅機制,以實現高度特異性的生物感測技術。 在此,提出的方法包括 MOF 合成、整合技術、生物標記選擇、即時監測以及用戶友好的即時診斷設備的開發。 預期成果包括開發功能性混合設備、發現 MOF-生物標記/藥物交互作用的見解以及驗證臨床應用的即時護理系統。 This research proposal outlines a comprehensive study aimed at the integration of metal-organic frameworks (MOFs) into plastic and paper-based hybrid micro/nano fluidics for advanced biomedical sensing and diagnostics. By combining the unique properties of MOFs with the versatility of microfluidic systems, this research targets the design and development of a universal platform technology capable of detecting biomarkers with high sensitivity and specificity. Although paper based micro/nano fluidics is widely investigated, the structural integrity of paper highly limits the patterning and therefore the final geometry for fluid manipulation. Thus, integrating low cost hydrophobic plastic as substrates onto specialized paper based geometrical patterns can be designed to form highly efficient nanochannels. Herein the paper based nanochannels with inherent capillary effects will aid in fluid transport while the hydrophobic plastic substrate will ensure superior mechanical/structural integrity while ensuring directional flow. Additionally, the outstanding catalytic properties and porous morphologies of MOFs can be harnessed to develop efficient mediators to control the amount of generated reactive oxygen species for applications in cancer therapy, wound healing etc. and for designing analyte specific catalytic quenching mechanisms to enable highly specific biosensing technology. Herein, the proposed methodology includes MOF synthesis, integration techniques, biomarker selection, real-time monitoring, and the development of a user-friendly point-of-care diagnostic device. The anticipated outcomes include the development of functional hybrid devices, discovery of insights into MOF-biomarker/drug interactions, and the validation of the point-of-care system for clinical applications.金屬有機框架;微流體;生物醫學感測;生物標記;護理點診斷;Metal-Organic Frameworks; Microfluidics; Biomedical Sensing; Biomarkers; Point-of-Care Diagnostics人力結構改善(Metal-Organic Frameworks with Specialized Functionalities Augmented with Plastic and Paper-Based Hybrid Micro/Nano Fluidics for Enhanced Biomedical applications)