指導教授:駱尚廉臺灣大學:環境工程學研究所鄭孟軒Cheng, Meng-HsuanMeng-HsuanCheng2014-11-302018-06-282014-11-302018-06-282014http://ntur.lib.ntu.edu.tw//handle/246246/264205過硫酸鹽經活化後可產生具高反應性之硫酸根自由基(SO4˙-)與氫氧根自由基(HO˙),可氧化有機物,且於酸性pH環境下,SO4˙-為優勢自由基;於中性pH環境下,SO4˙-可與氫氧根離子(OH-)進行自由基轉換,生成HO˙;於鹼性pH環境下,HO˙則為主要之自由基。 然而,過硫酸鹽於常溫中十分穩定,對污染物的氧化反應緩慢,因此,本研究利用銅改質後之活性碳催化過硫酸鹽,進行RB19之降解探討,並藉由改變過硫酸鹽劑量、銅批覆量、銅型活性碳劑量、初始溶液pH(3、5、7、9及11)以及反應溫度(25、35及45℃),比較過硫酸鹽單系統、銅型活性碳單系統及銅型活性碳催化過硫酸鹽之結合系統對染料降解能力之差異。 實驗結果顯示,於過硫酸鹽單系統時,提高過硫酸鹽添加量及溫度皆有助於提升RB19之去除率,而在以HO˙為優勢自由基之高pH條件下,染料之降解效果較好。銅型活性碳之物化分析結果顯示,經鍛燒後可使批覆之銅還原為零價銅的狀態,提供更高的催化能力,但批覆過量銅會降低活性碳之表面積,減少吸附與活性位置,造成RB19去除率的下降,經由實驗證實最佳之銅批覆量為1%,且其對染料的吸附機制可符合Bangham’s Model與非酸性環境下之Intra-particle Diffusion Model。此外,增加添加量、鹼性pH環境與提高溫度皆可提高RB19的降解。 銅型活性碳催化過硫酸鹽的結合系統中,染料去除率隨著過硫酸鹽的劑量及溫度的提升而增加,於不同pH下之效果為:pH 11 > pH 3 > pH 5 > pH 9 > pH 7,銅批覆量之結果與銅型活性碳單系統相同,皆於1 %批覆量時達到最佳降解效果。本實驗最佳操作條件為PS/RB19=25,1% Cu/AC添加量為1 g/L,pH=11並控溫於45℃,經一小時反應後,RB19的去除率可達96.79 %,且結合系統之活化能Ea= 56.14 KJmol-1。 於室溫下,比較單系統與結合系統之實驗結果,可觀察出明顯的加成效果。結合系統亦顯示高溫及鹼性環境下可提高其去除率,恰符合染料廢水具有之高溫及高pH特性,可見以銅型活性碳催化過硫酸鹽之方法適合用於降解含RB19之染料廢水。Sodium persulfate can be thermally or chemically activated to produce sulfate free radicals (SO4˙-) and hydroxyl free radicals (HO˙), which have very powerful oxidation ability for pollutants. It has been demonstrated that under acidic condition, SO4˙- is the dominant oxidant radical species;under neutral condition, the SO4˙- can proceed reaction with hydroxyl ions to generate HO˙;under alkaline condition, HO˙is the major oxidant radical species. However, Persulfate is stable at the ambient temperature and oxidate pollutants slowly. In this study, copper-impregnated activated carbon was used as the activator of PS to accelerate the degradation of anthraquinone dye RB19 by changing the ratio of copper impregnated, dosages of persulfate and Cu/AC, initial solution pH (3,5,7,9 and 11) and temperature (25,35 and 45℃). In addition, the differences of degradation potential between PS, Cu/AC and Cu/AC+PS wereinvestigated. In PS system, increase the dosage of PS and temperature can improve the removal efficiency of RB19. The alkaline condition is more favorable to the RB19 degradation due to the production of dominant radical species HO˙ which has higher redox potential. Physical and chemical analysis of Cu/AC showed that after calcinations, impregnated copper turned into zero valent state which can provide higher catalytic ability. Impreganating excess copper decreased the specific surface area of AC. With the decrease of adsorption and activation position, the removal ratio of RB19 would reduce. The experiments confirmed that the optimum copper impregnated ratio was 1%. The removal process of RB19 followed Bangham’s Model and Intra-particle Diffusion Model in Cu/AC system. In Cu/AC+PS system, the removal efficiency of RB19 increased with the enhancement of PS dosage and temperature. The effect of pH on RB19 degradation rate was pH 11 > pH 3 > pH 5 > pH 9 > pH 7. The optimum amounts of impreganated copper were the same with Cu/AC system; all get the best degradation efficiency at the impregnated amounts of 1%. The removal efficiency of RB19 can reach to 96.79% under optimum operational conditions of PS/RB19=25, 1 g/L 1% Cu/AC, pH=11 and 45℃ after one hour of reaction. Under the combined system, the reaction activation energyEa= 56.14 KJmol-1. Compare the experimental results of the single systems with those of the combined system at the ambient temperature, a significant synergistic effect can be observed. The combined system displays higher removal at a high temperature and in the alkaline environment, which is exactly in line with the characteristics of dye wastewater:the high temperature and high pH. It is thus evident that this method is suitable for the degradation of dye wastewater containing RB19.口試委員會審定書..............................i 摘要......................................iii Abstrate.................................vii 目錄.......................................ix 圖目錄.....................................xii 表目錄.....................................xiv 第一章 緒論.................................1 1.1研究緣起...................................1 1.2研究目的與內容..............................2 1.3 研究內容..................................2 第二章 文獻回顧..............................3 2.1染整廢水的特性..............................3 2.1.1 染料的種類及特性.........................3 2.1.2染料RB19之基本性質與結構...................5 2.1.3 RB19之處理技術..........................6 2.2過硫酸鹽...................................8 2.2.1過硫酸鹽溶於水中的反應.....................11 2.2.2硫酸根自由基之化學特性.....................11 2.2.3 pH值對過硫酸鹽的影響.....................12 2.2.4 溫度對過硫酸鹽的影響......................14 2.2.5 金屬活化過硫酸鹽.........................16 2.3活性碳吸附理論..............................19 2.3.1吸附現象.................................19 2.3.2活性碳之物化特性..........................20 2.3.3活性碳吸附機制............................22 2.3.4吸附模式及理論............................23 2.3.5金屬批覆於活性碳載體.......................27 2.3.6 活性碳催化過硫酸鹽理論 .....................28 第三章 實驗方法與內容..........................30 3.1 研究架構...................................30 3.2 實驗材料...................................32 3.2.1 實驗試劑.................................32 3.2.2金屬披覆活性碳製備..........................33 3.3實驗方法....................................35 3.3.1過硫酸鹽降解RB19實驗-直接氧化系統.............35 3.3.2 銅型活性碳去除RB19實驗.....................36 3.3.3過硫酸鹽與銅型活性碳結合之染料降解實驗..........36 3.3.4 Cu/AC重覆活性實驗.........................37 3.3.5 自由基抑制實驗............................37 3.3.6 過硫酸鹽催化鐵型活性碳實驗...................37 3.4實驗分析方法.................................38 3.4.1 場發射槍掃描式電子顯微鏡/X射線能量分散光譜儀....38 3.4.2 廣角X光粉末繞射儀 (XRD)..................39 3.4.3 紫外光/可見光光譜儀(UV-vis)...............39 3.4.4 離子層析儀(Ion-chromatograph, IC)......40 第四章 實驗結果與討論...........................41 4.1銅型活性碳之材料特性鑑定........................41 4.1.1場發射掃描式電子顯微鏡(FE-SEM)................41 4.1.2 廣角X光粉末繞射儀(XRD)......................48 4.2直接氧化系統-過硫酸鹽降解RB19實驗................49 4.2.1 過硫酸鹽劑量效應............................49 4.2.2 pH效應....................................51 4.2.3 溫度效應...................................54 4.2.4 過硫酸鹽降解RB19實驗結果.....................56 4.3吸附系統-銅型活性碳去除RB19實驗..................57 4.3.1 銅披覆活性碳比例效應.........................57 4.3.2銅型活性碳pH效應.............................58 4.3.3 銅型活性碳劑量效應...........................65 4.3.4 銅型活性碳溫度效應...........................70 4.4結合系統-銅型活性碳催化過硫酸鹽降解RB19實驗.........72 4.4.1 過硫酸鹽劑量效應.............................72 4.4.2 銅披覆活性碳比例效應..........................73 4.4.3 pH值效應...................................74 4.4.4活性碳劑量效應................................77 4.4.5 溫度效應....................................78 4.4.6結合系統機制探討..............................80 4.5結合系統於最佳化條件下之測試......................84 4.5.1銅型活性碳重覆使用活性試驗......................84 4.5.2 自由基抑制試驗...............................85 4.5.3 與鐵型活性碳結合系統之比較.....................87 第五章 結論與建議................................89 5.1 結論.........................................89 5.2 建議.........................................90 參考文獻..........................................92 附錄............................................1026876658 bytesapplication/pdf論文公開時間:2016/08/16論文使用權限:同意有償授權(權利金給回饋學校)蒽醌染料活性藍RB19過硫酸鹽活性碳銅催化高級氧化銅型活性碳催化過硫酸鹽應用於染料RB19降解之研究Persulfate Degradation of Dye Reactive Blue 19 Catalyzed by Copper-Impregnated Activated Carbonthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/264205/1/ntu-103-R01541133-1.pdf