潘永寧臺灣大學:機械工程學研究所游弼鈞Yu, Pi-ChunPi-ChunYu2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61045本研究針對雙金屬(高鉻鑄鐵—合金鋼)水泥鎚頭鑄件,建立其鑄造技術,並探討最佳熱處理條件及分析鎚頭之顯微組織(包含具耐磨耗性之頭部、具韌性之柄部及二者之界面區)及機械性質(包含硬度、衝擊值及耐磨耗性)。在實驗方法上,探討不同Destabilization溫度及回火溫度對於高鉻鑄鐵及合金鋼之顯微組織、硬度值、衝擊值及耐磨耗性之影響,以建立雙金屬水泥鎚頭之最佳熱處理條件,並以SEM及EDAX觀察碳化物之形態及分析雙金屬界面之組成。本研究之目的在於獲致優良硬度及耐磨耗性之高鉻鑄鐵頭部及優良韌性之合金鋼柄部,以期在實際應用時可獲致較傳統單合金高錳鋼鎚頭較長的使用壽命。 本研究採用底澆法將二種合金熔液連續澆注入鑄模內,在澆注完第一種合金熔液但並未完全凝固之前,即接續澆注第二種合金熔液,以得到雙金屬水泥鎚頭。針對熱處理製程而言,本研究所獲致之最佳熱處理條件為(900 ~ 1000)°C/2hr/強風冷卻/500°C/2hr。鎚頭柄部採用鎳鉻合金鋼,其鑄態顯微組織為麻田散鐵針狀組織,經熱處理後變態為回火麻田散鐵,而鎚頭頭部則採用高鉻白口鑄鐵,其鑄態顯微組織包含M7C3碳化物及沃斯田鐵,經熱處理後沃斯田鐵變態為回火麻田散鐵,並會析出細粒二次碳化物。柄部合金鋼與頭部高鉻鑄鐵兩者之界面接合良好,並無空孔或氧化物生成,且在部份區域有二相混合之情形。另,由磨耗試驗與衝擊試驗結果顯示,本研究所開發之雙金屬鎚頭具有良好之耐磨耗頭部與耐衝擊柄部,可取代傳統單合金高錳鋼水泥鎚頭。This study intended to develop the casting method for the production of bimetal hammers which consist of Cr-Ni steel shank and high Cr cast iron head, to establish the optimal heat treatment conditions for achieving the desired microstructures, hardness and wear resistant property, and to analyze the characterizations of carbides precipitated and the interface between the aforementioned two alloys by using SEM and EDAX. The aim of this study is to attain a bimetal hammer which has a tough alloyed steel shank and a high wear resistant head, which can replace the traditional single alloy (high Mn steel) hammer with substantially increased service life. A double-pour technique was employed to cast the bimetal hammer. A bottom-pour gating system with an overflow located at the intended interface between two alloys, together with a top open riser have been designed for this particular casting. Also, the optimal heat treatment conditions have been found to be (900~1000)°C/2hr/ FAC/500°C/2hr. The as-cast microstructures of the hammer head consist of proeutectic austenite dendrites and eutectic phases of M7C3 carbide and austenite. After heat treatment, most of the austenite transformed to martensite after quenching, which subsquently transformed to temper martensite after tempering. In addition, numerous small secondary carbides, which have been identified as M7C3, can also be observed within the original austenite domain. The as-cast microstructure of the hammer shank is martensite, which transformed to temper martensite after heat treatment. Furthermore, the analyses of the interface region reveal that not only a sound fusion between two alloys was achieved, but also little porosity and oxides were observed. The developed bimetal hammer exhibits good combined properties of a tough shank, 21 J/cm2, and a hard head, over 50HRC, which has much better wear resistance than the traditional high Mn steel hammer.口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 雙金屬之鑄造方式 4 2.2 高鉻白口鑄鐵 4 2.2.1 前言 4 2.2.2 碳化物種類 5 2.2.3合金設計 6 2.2.4 凝固組織控制 9 2.2.5 熱處理製程 9 2.3 磨耗機制 11 第三章 實驗方法及步驟 19 3.1 研究目的 19 3.2 合金設計 19 3.3 流路系統設計 19 3.4 熱處理 20 3.4.1高鉻鑄鐵熱處理預實驗 20 3.4.2高鉻鑄鐵之熱處理參數探討 20 3.4.3雙金屬鎚頭之最佳熱處理條件探討 21 3.5 顯微組織觀察 21 3.6碳化物種類鑑定及界面元素分佈分析 21 3.7 機械性質分析 22 3.7.1 硬度值測定 22 3.7.2 衝擊試驗 22 3.7.3 耐磨耗試驗 22 第四章 結果與討論 26 4.1國外鎚頭鑄件分析 26 4.1.1 顯微組織分析 26 4.1.2 硬度量測 27 4.1.3 小結 27 4.2雙金屬鎚頭鑄造製程開發 27 4.2.1 初步流路系統設計 27 4.2.2 改良之流路系統設計 28 4.2.3 小結 29 4.3 高鉻鑄鐵熱處理預實驗 29 4.3.1顯微組織分析 29 4.3.2硬度量測 30 4.3.3小結 30 4.4高鉻鑄鐵之熱處理參數探討 31 4.4.1顯微組織分析 31 4.4.2硬度量測 31 4.4.3小結 32 4.5 雙金屬鎚頭之最佳熱處理條件探討 32 4.5.1 顯微組織分析 32 4.5.2 硬度量測 32 4.5.3 小結 33 4.6 衝擊試驗 33 4.7 磨耗試驗 33 4.8 高鉻鑄鐵之碳化物分析 34 4.8.1 碳化物形態 34 4.8.2 二次碳化物分析 34 4.9 雙金屬界面分析 35 第五章 結論 68 第六章 未來研究方向 69 參考文獻 70en-US雙金屬雙液澆鑄高鉻鑄鐵耐磨耗性熱處理BimetalHigh Cr cast ironHeat treatmentWear resistance雙金屬水泥鎚頭之鑄造製程開發及其耐磨耗性Casting Process Development of the Bimetal Hammer and Its Abrasive Wear Resistance Propertythesis