2015-08-012024-05-16https://scholars.lib.ntu.edu.tw/handle/123456789/668674摘要:本計畫擬結合燃料電池、太陽能、二次電池、及化學產氫系統,針對電動車輛發展一套混合電力系統,提供電動車輛無汙染且持續的電源供應。 首先,燃料電池內部包含複雜的電化學反應,然而我們可以從控制的角度出發,將其視為線性系統,並將其非線性特性視作系統不確定性,並以先進控制理論增進其系統效能。其次,太陽能電池可將太陽光能&#63870;轉換為電能,所以我們可在車頂安裝太陽能光電板,提供輔助電力供應電動車輛使用,並搭配適當的充放電控制系統,在陽光充足時提供電動車電力,減少燃料電池及二次電池負擔,並延長系統操作時間。第三,我們將搭配二次電池建立一套串並聯搭配架構,並發展適當的電池充放電策略,可以在系統負載變動時輸出或是儲存電力,以穩定燃料電池系統的輸出聘提昇系統效率。第四,我們將採用硼氫化鈉作為化學儲氫物,批次注入反應槽與觸媒反應產生氫氣,經過除水器及散熱器,再由儲氫筒收集以供應燃料電池使用。最後,我們將發展 SimPowerSystems 電力系統模型,進行系統元件優化,以達到長時間且持續穩定的車用電力供應。 本計畫將使用電動車輛負載曲線,以 SimPowerSystem 進行系統模擬,並利用電子式負載機進行長時間測試,最後則將組裝混合電力電動車系統,進行系統驗證及展示。 <br> Abstract: This project aims to develop a hybrid power system for electric vehicles (EVs). The proposed hybrid system is composed of a proton exchange membrane fuel cell (PEMFC), solar panels, secondary battery sets, and chemical hydrogen production, to provide sustainable power for EVs. First, the PEMFC consists complicated electrochemistry reactions. However, from the system point of view, we can consider the PEMFC as linear models and regard the un-modelled dynamics as system uncertainties. Therefore, we can apply advanced control algorithms to improve system performance and efficiency. For example, our previous studies confirm that robust control can effectively reduce the hydrogen consumption and improve PEMFC performance. Second, the solar cells can transfer solar power to electricity. Therefore, we will implement solar panels to supply auxiliary power to the EVs. The solar power can be used to drive the vehicle and to charge the secondary battery when the motor load is low, and be used as auxiliary power when the load is high. Third, we will use secondary battery sets to balance the power supplies and loads. We will design a serial-parallel power train, and design suitable power management strategies for the EVs. Fourth, we plan to build a chemical hydrogen production system. Because the hydrogen delivery and storage of large volume is still a problem, the development of PEMFC EVs needs to depend on the corresponding infrastructure. Therefore, we plan to a self-sustainable hydrogen system for EVs. We will use sodium borohydride (NaBH4) to produce sufficient hydrogen for the hybrid system by batch-production procedures. Last, we will integrate the system and build a SimPowerSystem model to verify the system performance. The developed simulation model can also be used for component optimization. This project will apply practical EVs’ loading cycles for performance verification. We will use the simulation model to adjust the system components, and apply a load-meter for in-lab tests. Finally, we will integrate the hybrid-power EVs for road tests and system demonstration.燃料電池太陽能二次電池化學產氫電動車混合電力系統PEMFCsolar panelssecondary batterychemical hydrogen productionelectric vehicleshybrid power system電動車混合電力供應系統之研發