臺灣大學: 數學研究所張樹城; 王慕道洪培根Hung, Pei-KenPei-KenHung2013-03-212018-06-282013-03-212018-06-282012http://ntur.lib.ntu.edu.tw//handle/246246/249931跟著 [1] 中的計算,我們利用特定的次橢圓算子以及最大值原理來證明球面上餘維度 1 曲面的某些性質會在均曲率流中會保持。利用同樣的方法,我們證明雙曲空間中餘維度 1 的均曲率流也會保持某種凸性。Following the same computation in [1], we use certain subelliptic operator and maximal principle to prove non-collapsing for mean curvature flow in $S^{n+1}$. We also use similar method to prove the preservation of convexity for mean curvature flow in the hyperbolic space.140 bytestext/htmlen-US均曲率流尺度不變量最大值原理mean curvature flowscale invariantmaximal principle空間形式中均曲率流的幾何性質The Non-collapsing Property for Mean Curvature flow in S^{n+1}thesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/249931/1/index.html