2010-08-012024-05-17https://scholars.lib.ntu.edu.tw/handle/123456789/674644摘要:本計劃將研究當擁擠外部性及房屋租金具不確定性時,如何制訂最適成長邊界管制 及最適開發衝擊費。當擁擠外部性存在時,均衡情況下的都市邊界會較合乎效率準則的 最適都市邊界寬。因此,管制者可實施都市邊界管制或開發衝擊費來矯正此種情況。既 有文獻大多假設房屋租金為確定以及都市為開放系統,來討論最適邊界管制的問題。本 計劃將延伸這些既有模型。在第一年時,本計劃會將房屋租金具不確定性引進Brueckner (1990) 的開放城市系統。然而,Brueckner 假設政府所設定的都市邊界管制為出乎民眾 意料之外的政策,而本計劃則將假設民眾理性預期到此種管制,因此所獲結論會和 Brueckner 大相逕庭。在第二年時,本計劃亦將引進租金不確定性於Helsley and Strange (1995) 的封閉城市體系的模型。他們只討論兩城市彼此競爭成長邊界管制的納許均衡, 而未討論最適成長管制的問題,因而和本計劃的焦點顯著不同。<br> Abstract: This project investigates the design of optimal growth boundary controls and impact fees when there exists congestion externality and when urban rents are stochastic. When there exists congestion externality, the equilibrium city boundary will be broader than is socially optimal. A regulator can implement growth boundary controls or impact fees to correct this inefficiency. The existing literature typically investigates the design of optimal growth boundary controls and impact fees in a framework where no uncertainty arises and where the city is an open system. This project will extend the standard literature. In the first year, this project will add uncertainty into the Brueckner’s open city model (1990). The conclusion will significantly differ from Brueckner’s as this project will assume that a regulator implements the growth boundary control that is expected by developers rather than unexpected. In the second year, this project will add uncertainty into the closed city model of Helsley and Strange (1995). This project, however, significantly differs from theirs because they investigate only the Cournot-Nash equilibrium between two cities that are subject to growth boundary controls rather than investigate the optimal growth boundary controls.擁擠外部性房屋租金不確定性及最適邊界管制與最適開發衝擊費The Design of Optimal Growth Boundary Controls and Impact Fees With Congestion Externality and Stochastic Rents on Housing擁擠外部性、房屋租金不確定性、及最適邊界管制與最適開發衝擊費