黃光裕臺灣大學:機械工程學研究所吳佳霖Wu, Cha-LinCha-LinWu2007-11-282018-06-282007-11-282018-06-282007http://ntur.lib.ntu.edu.tw//handle/246246/61524本論文整合電磁線圈及靜氣壓軸承設計開發一種小型氣靜壓式導引高精度之電磁致動器。雙列徑向供氣之氣靜壓軸承提供致動軸作徑向的支撐,其低摩擦之特性有助於提升定位精度,致動軸兩端外側設有固定線圈與致動線圈,調整致動線圈軸向位置可以改變致動器最大行動範圍。固定線圈及致動線圈對致動軸產生之磁力彼此相抗衡,透過控制致動線圈電流大小來改變磁力平衡關係,進而驅動致動軸達成定位之目的。氣靜壓軸承整合了端面節流孔和陶瓷軸承套,在致動軸圓周上建構出徑向支撐氣膜,氣靜壓軸承運用氣浮原理可以降低移動致動件的功率,減少摩擦之滯滑現象,並保持精密的導引。低功率之電磁線圈有助於減少熱膨脹造成之定位誤差,加上氣靜壓氣流之散熱效果可以使致動器能在長時間操作下保持精度。本研究透過有限元素分析及實驗探討電磁線圈組中之磁力變動情形,推得致動力及控制定位之關係,並討論其性能優劣。The paper presents a novel design of a small aerostatic guided electromagnetic linear actuator, which is integrated with the electromagnetic solenoids and aerostatic bearings. The aerostatic bearing levitates the actuating rod with four radial air inlets on each side. The frictionless aerostatic guide can improve the actuating rod is electromagnetically driven by a fixed solenoid and a actuating solenoid. Through adjusting the axial position of the actuating solenoid, the actuating stroke can be fine regulated. The both solenoids create opposing magnetic forces, and their balancing condition can be controlled by the current regulation of the actuating solenoid. By means of the force balance controlling the electromagnetic actuator realizes the precision positioning. The aerostatic bearing integrates the surface restrictors with the ceramic journal bearings toe build up the radial supporting air film around the actuating rod for accurate guiding. The aerostatic levitation can effectively reduce the driving power for the actuating rod and avoid the stick-slip effect during the sliding process. The low driving power can also decrease the thermal induced positioning error, and the air flow can enhance the cooling efficiency for perserving long-time operational accuracy. By applying the finite element analyses and the experiments, the magnetic conditions insides the solenoids, the actuating force and the actuating displacement and studied.第一章 緒論.........................1 1.1 研究背景與動機 ..................1 1.2 文獻回顧........................ 2 1.3 研究目的........................ 4 1.4 內容簡介........................ 4 第二章 氣壓軸承與節流孔介紹.........6 2.1 氣體軸承與節流閥簡介............ 6 2.2 氣體軸承之不穩定現象............ 8 第三章 電磁致動原理與特性...........10 3.1磁力數學模型推導................. 10 3.2電磁線圈磁阻推導................. 12 3.3位移對電磁力之現象............... 15 3.4電磁線圈致動器之設計概念 .........16 第四章 氣靜壓式導引電磁致動器.......17 4.1 系統概念設計.................... 17 4.2 雙列徑向節流裝置................ 19 4.3 電磁線圈磁力量測裝置............ 22 第五章 致動器性能之實驗測試 ........23 5.1 致動器測試平台架構.............. 23 5.2 驅動電流對電磁致動器之性能影響.. 23 5.3 驅動與定位影響量測與探討........ 24 第六章 致動器性能分析與模擬.........25 6.1 致動器承載力分析................ 25 6.2 電磁式致動元件之致動分析........ 27 6.3 致動器之運動分析探討............ 28 第七章 可控行程致動器設計與運動控制.30 7.1 可控行程致動器設計架構.......... 30 7.2 高精度致動性能 ..................32 第八章 總結與未來展望............... 34 參考文獻............................ 35 附錄................................ 362630124 bytesapplication/pdfen-US電磁致動器電磁線圈氣靜壓軸承低摩擦驅動electromagnetic linear actuatorsolenoidaerostaticlow friction driving小型氣靜壓式導引高精度電磁致動器之設計與性能分析Design and Development of Small Aerostatic Electromagnetic Linear Actuator with High Precision and Research on its Performancethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/61524/1/ntu-96-R94522606-1.pdf