薛人愷2006-07-252018-06-282006-07-252018-06-282005http://ntur.lib.ntu.edu.tw//handle/246246/12500本研究以三種銀基硬銲填料Ag、BAg-8(72Ag-28Cu)、95Ag-5Al,分別以傳統真空硬銲及紅外線硬銲方式接合Ti-6Al-4V 及鈮金屬。根據動態潤濕角的量測及接合界面顯微組織可發現,傳統管型爐硬銲接合Ti-6Al-4V 與鈮金屬時,使用 Ag、 BAg-8 或95Ag-5Al 為硬銲填料皆會生成過多的介金屬化合物。使用BAg-8 與95Ag-5Al 填料分別進行紅外線硬銲,其試片最高的平均剪力強度可達224.1 與172.8 MPa。隨著硬銲的溫度與(或)時間的增加,其平均剪力強度將減少;並且由於鈦銅或鈦鋁介金屬的過度成長,試片裂縫的位置由硬銲填料合金處轉變為界面反應層。實驗結果顯示,使用紅外線爐快速硬銲製程,當可 有效抑制介金屬化合物的生成及過度成長的問題,並能降低基材長時間暴露於高溫環境下之不良影響,故可獲得較佳的接合品質。The purpose of this research is focused in vacuum brazing, including traditional vacuum furnace brazing as well as infrared brazing, Ti-6Al-4V and Nb metal using pure Ag, BAg-8 (72Ag-28Cu) and 95Ag-5Al, respectively. Based on dynamic wetting angle measurements and microstructural observation of the brazed interface, excessive brittle intermetallic compounds are formed using Ag, BAg-8 and 95Ag-5Al as the brazing fillers. The infrared brazed joint using BAg-8 and 95Ag-5Al have the highest average shear strength of 224.1 and 172.8 MPa respectively. The averaged shear strength of the brazed joint is decreased with increasing brazing temperature and/or time, and its fracture location changes from the braze alloy into the interfacial reaction layer(s) due to excessive growth of the Cu-Ti or Ti3Al intermetallics. The application of rapid infrared brazing can effectively inhibit the formation of intermetallics during brazing. The deterioration of base metal due to high brazing temperature can also be avoided, so better quality of the brazed joint is achieved.application/pdf2119103 bytesapplication/pdfzh-TW國立臺灣大學材料科學與工程學系暨研究所真空硬銲鈦合金鈮金屬銀基填料顯微組織界面剪力測試vacuum brazingtitanium alloysniobium metalsilver-base filler metalsmicrostructureinterfaceshear testTi-6Al-4V與異種金屬硬銲之研究(2/3)reporthttp://ntur.lib.ntu.edu.tw/bitstream/246246/12500/1/932216E002028.pdf