指導教授:潘國隆臺灣大學:機械工程學研究所黃培勳Huang, Pei-HsunPei-HsunHuang2014-11-292018-06-282014-11-292018-06-282014http://ntur.lib.ntu.edu.tw//handle/246246/263285 本文接續了為改善傳統圓盤鈍體駐焰器之目的所提出的帽頂機構研究,實驗主要以過去對於此研究主題之分析為基礎,加入燃料粒子導入裝置,並改善石英材料帽頂機構之透明度,使用粒子影像測速系統,為了與過去的研究作一對照,將中心燃料流速固定為1.2 m/s,環流空氣流速分別為0.38、1.5、2.65、3.75 m/s,所對應之雷諾數為1402.2、5535、9778.5以及13837.5,火焰型態分別為似噴流火焰、過渡火焰、似預混迴流火焰以及似預混噴流火焰,利用每秒1000、2000、4000、5000張影像之擷取速度,更加深入精確地分析加入帽頂機構流場內部之平均速度場、平均渦度場、平均水平及垂直方向之速度擾動量,以及無因次化之紊流強度場。並且使用數值模擬分析實驗上不易獲得之物理,如帽頂機構內部之完整速度及流線場、各反應物之組分莫耳分率、溫度場及熱釋放等等,並與傳統圓盤鈍體作一比較。 由帽頂機構內部之渦度場可發現,隨著環流速度增加,內部之空氣迴流區有擴大增強的趨勢,且流場高速區將由迴流區兩側轉移至迴流區上方,並且由速度擾動量及無因次紊流強度得到在似預混噴流火焰下,水平速度擾動量高峰值將出現在帽頂出口處下方,驗證了在此型態下火焰存在間歇性阻斷現象。 數值模擬則分析中間產物CO及最終產物CO2兩者之組分分率,CO大致為反應面輪廓,CO2則於反應過後跟隨流場被帶至下游,且由溫度場及熱釋放可觀察到隨著環流速度增加,熱釋放體積積分量值及溫度場提高,且內部燃燒比例下降,在帽頂表面達到很好的駐焰效果。 The present study focused on the stabilizing mechanism of a cap combustor. Based on previous studies, fuel-seeding device, and improvement of the transparency of a quartz cap. With Particle Image Velocimetry (PIV) system, the velocity of central fuel ejection is set at 1.2 m/s while the co-air flow velocity is set at 0.38, 1.5, 2.65, 3.75 m/s for jet-like flame, transition, premixed-like recirculated flame, and premixed-like jet flame. Images are recorded at rate of 1000, 2000, 4000 and 5000 flame per second to investigate mechanism of combustion and mixing of inner of cap. With numerical simulation for bluff body, we can analyze some physical phenomenon which is difficult to analyze in experimental, and thus numerical results could be compared with the experimental ones by disc and cap. At same boundary condition with previous study, we analyze four types of flame in the inner of cap, and found that while co-air flow velocity raise, the range of vorticity of the inner of cap became larger. With turbulent intensity, we found that at much higher momentum of the co-air flow, the stability of the flame will be reduced. In numerical analyze, we found CO mole fraction distribution implies the flame outline. While reactions finished, the product (CO2) will follow the flow and be brought to downstream. The temperature field and the heat of reactions specify that while co-air flow velocity raise, the temperature and the heat of reactions will uplift, and the burn ratio in the inner of cap will reduce, promote the burner efficiency on the surface of cap.口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv 符號表 v 目錄 vii 圖目錄 ix 1.1 前言 1 1.1.1 研究背景 1 1.1.2 研究動機與目的 2 1.2 文獻回顧 4 Chapter 2 實驗設備與方法 11 2.1 實驗架構與燃燒器之構造 11 2.2 氣體供應系統及其配置管路 15 2.3 粒子影像測速法 16 2.4 實驗誤差與校正 21 2.5 雷諾數之定義 24 Chapter 3 理論模型 25 3.1 簡介 25 3.2 基本假設 26 3.3 統御方程式 27 3.4 紊流模型 32 3.5 燃燒模型 34 3.6 幾何形狀與邊界條件 35 Chapter 4 結果與討論 37 4.1 帽頂燃燒器之火焰型態 37 4.2.2 瞬時流場 69 Chapter 5 結論 124 參考文獻 126 附錄 12939618248 bytesapplication/pdf論文公開時間:2014/08/25論文使用權限:同意有償授權(權利金給回饋本人)雙環噴流燃燒器粒子影像測速儀帽頂機構應用粒子影像測速儀與數值模擬分析帽頂機構及圓盤鈍體之流場PIV Measurement and Numerical Simulation of Flow Structure in a Cap and a Bluff-body Combustorthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/263285/1/ntu-103-R01522111-1.pdf