2016-04-012024-05-18https://scholars.lib.ntu.edu.tw/handle/123456789/712445摘要:鑒於表面電漿光觸媒之複合特性—表面電漿奈米結構(如銀奈米結構)在可見光波段之顯著吸收與共振,以及半導體材料(如TiO2與ZnO)在紫外光頻段能產生大量之電子/電洞對,進而提升光觸媒效率,其於新穎能源材料的應用相當廣泛。另一方面,還原態之石墨烯氧化物具有優異的光電子儲存及傳輸特性,同時具有大量且活躍的化學空缺位置,不僅能加速電子電洞傳輸速度,亦能降低電子電洞的再結合機率,因此也常應用於光觸媒。本計畫旨在利用表面電漿奈米結構及片狀石墨烯氧化物的優點來建立並探討以半導體為基底之奈米複合型光觸媒材料之特性。其中銀奈米結構將藉由濕式化學法及光輔助成長法來合成,並且隨著不同的共振波長需求來改變銀奈米結構之尺寸大小。在光觸媒的應用中,為了增加入射光的捕捉效率,本研究將利用島狀微影法及水熱法的搭配來製作具有特殊結構的基材。同時為了瞭解及描繪此複合材料在不同的光源下之電場分布及電場增強情況,吾人將以有限差分時域法來進行模擬分析。最後,銀奈米結構/還原態之石墨烯氧化物/石墨烯氧化物/TiO2複合材料於光觸媒之適用性將以光降解速率及光電流大小之特性來加以鑑定。除了上述的規劃,本團隊在先前的研究中獲得的成果能有力的支持本計畫之可行性。吾人認為完成此計畫不僅將有助於提升表面電漿子光觸媒之應用性,於光學性質的特性描述、操作方法,以及金屬奈米結構與具特殊結構的基材之製程技術,皆能提供後人可靠的參考標準。<br> Abstract: Plasmon-induced photocatalyst has found its application in the clean and renewable energy issue due to its combination of the large absorption and resonance in the visible region for plasmonic nanostructures (e.g., Ag nanostructures) with the ability of producing the electron-hole pairs in the ultraviolet range for semiconductors (e.g., TiO2 and ZnO). Reduced graphene oxide (RGO) could be applied to photocatalyst for its promising properties with storing and transporting photogenerated electrons and chemically active defect sites. The purpose of this proposal is to develop the novel semiconductor-based nanocomposites with the advantages of plasmonic nanostructures and exfoliated graphene oxide sheets. Ag nanostructures synthesized by wet chemical method and light-assisted growth method with various resonant wavelengths will be incorporated into nanocomposites. Island lithography and hydrothermal method will be used to fabricate textured substrates in order to achieve the light trapping in the application of photocatalyst. Simulations will be performed using finite-difference time-domain (FDTD) method to characterize the electric field distribution and enhancement in the presence of the metallic nanostructure and semiconductor under different light sources. The photodegradation and photocurrents for Ag nanostructures/RGO/GO/TiO2 composites will be evaluated. In addition, we have performed preliminary studies to support the feasibility of our proposal. Successful execution of our proposal will lead to the applications for not only plasmonic photocatalyst but also optical characterization, manipulation, and processing information with metallic nanostructures and textured substrates.表面電漿子光觸媒還原態石墨烯氧化物島狀微影法水熱法有限差分時域法PlasmonicPhotocatalystReduced graphene oxideIsland lithographyHydrothermal methodFDTD銀奈米粒子/石墨烯氧化物/具特殊結構半導體基材之奈米複合材料於表面電漿誘發光觸媒之研究