國立臺灣大學醫學院外科郭夢菲2006-07-262018-07-112006-07-262018-07-112005-10-31http://ntur.lib.ntu.edu.tw//handle/246246/24552水腦是由於腦脊髓液分泌過多、流暢失常或吸收不良造成腦室膨大的一種病症,不論 在成人或兒童都可能引發動作、行為及認知上的異常。動物及人的研究顯示,此症常伴有 腦室周邊組織(如:白質)及大腦皮質的破壞。然而這些受影響皮質的結構及個別神經元 的狀況卻少有探討與瞭解。本計畫以Nissl 染色以及PGP9.5, GAD, NOS 等抗體標示神經 元,而以GSA I-B4 凝集素以及GFAP, CD11b, ED-1 等抗體標示神經膠細胞來瞭解在側腦室 上方,受壓迫的感覺運動皮質結構上的變化。此外,我們應用“已固定組織細胞內染料注入 法”及隨後的免疫組織轉變反應及單一神經細胞重組技術來探討皮質的傳出神經元—第三 及第五層錐狀細胞的整體胞體及樹突型態在水腦時的改變,並探討其整體樹突叢、樹突分 支密度、樹突長度及其棘突密度等的改變。透過這些資料能了解這些受壓迫細胞在構造外 功能上可能產生的改變。此外,我們也以“活腦薄片神經聯繫追蹤技術”探討這兩種錐狀細 胞的近距離軸突投射,藉此瞭解這兩種細胞是否仍控制著其標的構造,以推論在水腦時, 受壓迫的皮質的整體功能狀態。 本實驗的結果增進我們瞭解水腦症的病理生理變化,同時也可瞭解受水腦壓迫的大腦 皮質的功能狀態。Hydrocephalus, a pathological enlargement of the cerebral ventricles resulted from oversecretion, abnormality of flow, or malabsorption of cerebrospinal fluid is known to cause motor, behavioral and cognitive deficits in children and adults. Animal and human studies thus far indicate damages to structures along the periventricular area, in particular nerve fibers of the white matter. However, despite the dramatic thinning of the cortex above the lateral ventricle, no studies have dedicated to understand the cytoarchitecture and individual neuron status of the affected cortical area. In this study, we use Nissl and anti-PGP9.5, GAD, and NOS as neuron markers and the lectin GSA I-B4 and anti-GFAP, CD11b, ED-1 as glial markers to study the changes of the cytoarchitecture of the affected cortex, the sensorimotor cortex. In addition, we use fixed-tissue intracellular dye injection technique to study the soma-dendritic arbors of the layer III and V pyramidal neurons, the cortical output neurons, of the affected sensorimotor cortex. The technique and its subsequent immunoconversion and reconstruction reveals the complete soma-dendritic morphology of neurons selected for injection and allows detailed analysis of the extent of their dendritic arbors, branching profuseness, dendritic length and dendritic spine densities. These detailed morphological data can reveal the functional status of these neurons under compression. In addition, we performed neuronal tracing in live slices in a custom-designed incubation chamber to reveal the short-distance projections of these two types of pyramidal neurons to find out whether they still control their targets. These data are crucial to determine how the compressed cortex may function during hydrocephalus.application/pdf465936 bytesapplication/pdfzh-TW國立臺灣大學醫學院外科水腦症星狀細胞大腦皮質細胞內染料注射微膠細胞Hydrocephalusastrocytescerebral cortexintracellular dye injectionLucifer yellowmicroglia水腦對感覺運動皮質的影響:細胞結構之研究reporthttp://ntur.lib.ntu.edu.tw/bitstream/246246/24552/1/932314B002242.pdf