臺灣大學: 數學研究所王振男馮文彥Feng, Wen-YenWen-YenFeng2013-03-212018-06-282013-03-212018-06-282010http://ntur.lib.ntu.edu.tw//handle/246246/249884這篇論文是狄拉克算子強唯一連續延拓性的統整。我們知道在歐氏空間中一函數遞減至零的速度比任何多項式還要迅速,該函數仍然可能不顯然。而一微分方程或微分不等式擁有強唯一連續延拓性,指的是該微分方程或不等式的解,若於定義域上之某一點其遞減至零的速度,處處比任何多項式還要迅速,則該函數必等於零在連通的定義域上。This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation property(SUCP) if u is a solution of this differential equation (or inequality) and u vanishes of infinite order at some x_{0}, then u is identically zero.461287 bytesapplication/pdfen-US狄拉克方程狄拉克算子唯一連續延拓性強唯一連續延拓性卡勒門不等式Dirac operatorDirac equationunique continuation propertyStrong unique continuation propertyCarleman-type inequalities狄拉克算子強唯一連續延拓性的統整The strong unique continuation property for the Dirac operatorthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/249884/1/ntu-99-R97221012-1.pdf