指導教授:王金龍臺灣大學:數學研究所邱詩凱Chiu, Shih-KaiShih-KaiChiu2014-11-302018-06-282014-11-302018-06-282014http://ntur.lib.ntu.edu.tw//handle/246246/264028在 Seidel 的博士論文 [Sei97] 中,他與他的指導教授 Donaldson 證明,若一緊緻凱勒流形 (compact Kahler manifold) 擁有一個尋常退化 (ordinary degeneration),則此凱勒流形內存在拉格朗日球面 (Lagrangian sphere)。這個結果引發以下的延伸問題:如果此凱勒流形為一卡拉比 -丘流形 (Calabi-Yau manifold),我們是否能夠在其中找出一個特殊拉格朗日球面 (special Lagrangian sphere)?透過文獻回顧,我們將探討特殊拉格朗日子流形 (special Lagrangian submanifolds) 的基本知識,以及球面的切叢 (the cotangent bundle of sphere) 上的瑞奇平坦度量 (Ricci-flat metrics)。在論文的最後,我們透過均曲率流 (mean curvature flow) 來探討一維的情形。In his PhD thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson gave two proofs showing that a vanishing cycle in a Kahler manifold admitting an ordinary degener- ation can be chosen to be Lagrangian. This gives rise to the question whether the vanishing cycle is special Lagrangian if the manifold is Calabi-Yau. We investigate this problem by reviewing the geometric aspect of special Lagrangian manifolds and the Ricci-flat met- rics on the noncompact local model, namely the cotangent bundle of sphere. Finally, we approach this problem in dimension one through mean curvature flow.Contents 口試委員會審定書 i 謝辭 ii 中文摘要 iii Abstract iv 1 Introduction 1 2 Special Lagrangian Geometry 2 2.1 Definitions and Basic Results........................ 2 2.2 McLean’s Theorem............................. 3 2.3 Geometric Structures on the Local Moduli Spaces . . . . . . . . . . . . . 9 3 Ricci-flat metrics on T^∗ S^n 15 3.1 Existence of the Metric........................... 15 3.2 Completeness of the Stenzel Metric .................... 19 3.3 Special Lagrangian Structures ....................... 21 4 Existence of Lagrangian Spheres 23 4.1 Seidel’s Proof................................ 24 4.2 Donaldson’s Proof ............................. 27 5 Discussion on the Main Problem 29 5.1 Formulation of the Main Problem ..................... 29 5.2 Results in n=1............................... 30449213 bytesapplication/pdf論文公開時間:2014/08/25論文使用權限:同意無償授權特殊拉格朗日子流形瑞奇平坦度量特殊拉格朗日球面存在性問題之探討On the Existence Problem of Special Lagrangian Spheresthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/264028/1/ntu-103-R01221031-1.pdf