指導教授:林正芳臺灣大學:環境工程學研究所林玠佑Lin, Chieh-YuChieh-YuLin2014-11-302018-06-282014-11-302018-06-282014http://ntur.lib.ntu.edu.tw//handle/246246/264175金門太湖鄰近城鎮飲用水安全一直是金門地區存在的問題,湖庫水中TOC為13~16 mg / L,快濾出水平均TOC分別為13.5和9.49 mg / L,慢濾出水則為11.21和7.78 mg / L,太湖淨水場處理流程對於水中溶解性有機物之去除效果有限,快/慢濾處理系統無發揮其功能,本研究以快/慢濾出水應用粉狀活性碳結合強化混凝再接續陶瓷膜過濾來提升水中溶解性有機物去除效果,選用三種常用之混凝劑:硫酸鋁、多元氯化鋁、氯化鐵,進行單次混凝和多次混凝,活性碳則選用粉狀活性碳,透過吸附動力試驗決定吸附平衡時間,藉由分析TOC、UV作為選擇最適混凝劑劑量等相關操作參數,接續將兩者結合應用探討處理效果,最後以陶瓷膜進行過濾,以固定通量操作觀察透膜壓差和滲透性係數變化。三種混凝劑中以多元氯化鋁對溶解性有機物去除效果較佳,最適劑量為200 mg / L,粉狀活性碳吸附時間為30分鐘,個別以混凝劑和粉狀活性碳作為吸附去除水中有機物的效果有限,使用粉狀活性碳150 mg / L搭配多元氯化鋁200 mg / L方式有效將快/慢濾水中TOC去除至4 mg / L以下,混凝後不沉澱直接以陶瓷膜過濾,在通量97.5 LMH及過濾時間160分鐘條件下,透膜壓差上升幅度為10 kPa,滲透性係數從8下降至5.4 LMH / kPa,符合陶瓷膜高濾水低阻塞之特性,反沖洗和化學反洗的回復性以化學反洗較佳,表示存在不可逆積垢,在操作上需要化學反洗才能有效去除積垢。Safety drinking water has been an issue in Kin-men for a long term. Because the Tai-lake was polluted, the water plan can’t remove the dissolved organic matter (DOM) successfully. According to the result of investigation, the TOC in Tai-lake is 13~16 mg / L and the average TOC after the rapid filter are 13.5 mg / L in 2013 and 9.49 mg / L in 2014, and treated after slow sand filter are 11.21 mg / L in 2013 and 7.78 mg / L in 2014. It is obviously to see that the filtration units are unable to remove DOM. In my research, I will use powdered activated carbon(PAC) with enhanced coagulation and combine ceramic membrane to build a treatment process, in order to elevate the removal of DOM. By analyzing TOC and UV to determine the best of three kinds of coagulants ( alum, poly aluminum chloride(PACl), ferric chloride) and the adsorption time for powdered activated carbon. Controlling flux when using ceramic membrane to filtrate and observe the change of trans-membrane pressure ( TMP ) and permeability. From the experiment results, PACl has the best performance in removing DOM, the optimum dosage is 200 mg / L. The adsorption time of PAC is 30 min. By using PAC 150 mg / L with PACl 200 mg / L can successfully eliminate the TOC down to 4 mg / L to meet the standard. In the ceramic membrane system , the flux is 97.5 LMH, the TMP increase 10 kPa and permeability decrease from 8 to 5.4 LMH / kPa for filtrating 160 min. Enhanced chemical backwash is better than back wash in removing membrane fouling.誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目標與內容 2 第二章 文獻回顧 3 2-1 水中天然有機物 3 2-1-1 水中天然有機物之組成與基本性質 3 2-2 混凝 4 2-2-1 混凝及膠凝 4 2-2-2 鋁鹽之混凝 5 2-2-3 鐵鹽之混凝 5 2-2-4 影響混凝之因子 5 2-2-5 強化混凝 6 2-2-6 混凝去除水中有機物機制 8 2-3 活性碳 10 2-3-1 活性碳之應用 10 2-3-2 活性碳之性質 10 2-3-3 吸附現象 11 2-3-4 影響活性碳吸附之因素 12 2-3-5 粉狀活性碳 13 2-3-6 粉狀活性碳吸附之限制 14 2-3-7 粉狀活性碳結合強化混凝 15 2-4 薄膜 17 2-4-1 薄膜材質與形式 17 2-4-2 薄膜分離與影響因子 18 2-4-3 陶瓷膜 19 2-4-4 薄膜積垢生成 21 2-4-5 薄膜積垢清除 22 第三章 實驗方法與材料 23 3-1 實驗內容與項目 23 3-2 實驗材料 25 3-2-1 實驗水源 25 3-2-2 藥品 26 3-2-3 儀器器材 27 3-3 實驗設備 27 3-3-1 薄膜模組 27 3-3-2 薄膜過濾與反洗設備 29 3-3-3 陶瓷膜過濾機制 29 3-3-4 清洗試劑 30 3-4 實驗步驟 31 3-4-1 水樣前處理 31 3-4-2 混凝試驗 31 3-4-3 陶瓷膜系統 31 3-5 分析儀器及方法 32 3-5-1 水中總有機碳分析 32 3-5-2 UV吸光值 32 3-5-3 水中鹼度分析 33 3-5-4 水中濁度分析 33 3-5-5 水中導電度與總溶解性固體 34 3-5-6 水中殘餘鋁量 34 第四章 結果與討論 35 4-1 太湖淨水場處理現況 35 4-2 混凝劑選擇 37 4-2-1 硫酸鋁( Alum ) 38 4-2-2 氯化鐵( Ferric Chloride ) 39 4-2-3 多元氯化鋁( Poly Aluminum Chloride, PACl ) 40 4-2-4 多元氯化鋁最佳劑量及混凝次數選擇 41 4-3 粉狀活性碳動力吸附平衡 42 4-4 粉狀活性碳結合強化混凝 43 4-4-1 添加順序 43 4-4-2 TOC與UV254 44 4-4-3 TOC去除率與UV254去除率 46 4-4-4 SUVA 48 4-5 水質差異比較 49 4-5-1 TOC 51 4-5-2 UV254 53 4-5-3 SUVA 54 4-6 陶瓷膜濾水 56 4-6-1 批次試驗 56 4-6-2 批次試驗-反沖洗(濾液) 61 4-6-3 批次試驗-化學反洗( CEB ) 63 4-6-4 積垢比較 65 第五章 結論與建議 67 5-1 結論 67 5-2 建議 68 參考文獻 69 附錄 751709246 bytesapplication/pdf論文公開時間:2015/08/17論文使用權限:同意有償授權(權利金給回饋學校)強化混凝粉狀活性碳陶瓷膜溶解性有機物[SDGs]SDG6強化混凝結合薄膜系統去除消毒程序前之水中溶解性有機質Enhanced Coagulation with Membrane System in Removing Dissolved Organic Matterthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/264175/1/ntu-103-R01541206-1.pdf