臺灣大學: 資訊管理學研究所李瑞庭李偉誠Lee, Wei-ChengWei-ChengLee2013-03-222018-06-292013-03-222018-06-292010http://ntur.lib.ntu.edu.tw//handle/246246/251372目前,已有許多學者提出探勘頻繁一維區間樣式的方法。但是,在實務上,有許多的資料是多維度的區間,如醫學療程分析中的收縮壓、舒張壓、脈博等等。因此,在本篇論文中,我們提出一個名為「MIAMI」的演算法,以頻繁樣式樹的方式依序列舉出所有的頻繁樣式,並以深度優先法遞迴產生所有的封閉性多維區間樣式。在探勘的過程中,我們設計數個有效的修剪策略以刪除不可能的樣式,以及使用封閉性測試移除非封閉性樣式。實驗結果顯示,MIAMI演算法比改良式Apriori演算法更有效率,也更具擴充性。Many methods have been proposed to find frequent one-dimensional (1-D) interval patterns, where each event in the database is realized by a 1-D interval. However, the events in many applications are in nature realized by multi-dimensional intervals, such as systolic pressure, diastolic pressure, and pulse in medical treatment analysis, where each index during a certain period of time may be represented by a 1-D interval. Therefore, in this thesis, we propose an efficient algorithm, called MIAMI, to mine closed multi-dimensional interval patterns from a database. The MIAMI algorithm employs a pattern tree to enumerate all frequent patterns and generates the patterns in a depth-first search manner. In the mining process, we employ several effective pruning strategies to remove impossible patterns and perform a closure checking scheme to eliminate non-closed patterns. The experimental results show that the MIAMI algorithm is more efficient and scalable than the modified Apriori algorithm.498030 bytesapplication/pdfen-US多維區間樣式一維區間樣式頻繁樣式封閉性樣式資料探勘multi-dimension interval pattern1-dimension interval patternfrequent patternclosed patterndata mining封閉性多維區間樣式之資料探勘Mining Closed Multi-Dimensional Interval Patternsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/251372/1/ntu-99-R97725019-1.pdf