Hong T.-Z.Chang W.-H.Agarwal A.Huang Y.-T.Yang C.-Y.Chu T.-Y.Chao H.-Y.Chuang Y.Chung S.-T.Lin J.-H.Luo S.-M.Tsai C.-J.Li M.-J.Yu X.-R.Lin N.-C.Cho T.-C.Sung P.-J.Su C.-J.Luo G.-L.Hsueh F.-K.Lin K.-L.Ishii H.Irisawa T.Maeda T.Wu C.-T.Ma W.C.-Y.Lu D.-D.Kao K.-H.Lee Y.-J.Chen H.J.-H.Lin C.-L.Chuang R.W.Huang K.-P.Samukawa S.Li Y.-M.Tarng J.-H.Chao T.-S.Miura M.Huang G.-W.Wu W.-F.JIUN-YUN LIShieh J.-M.Wang Y.-H.Yeh W.-K.2021-09-022021-09-02202001631918https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102917891&doi=10.1109%2fIEDM13553.2020.9372001&partnerID=40&md5=31013973a9e46607a532c9c76ed8e15chttps://scholars.lib.ntu.edu.tw/handle/123456789/581011For the first time, we demonstrate heterogeneous complementary FETs (hCFETs) with Ge and Si channels fabricated with a layer transfer technique. The 3D channel stacking integration particularly employs a low-temperature (200 °C) hetero-layers bonding technique (LT-HBT) realized by a surface activating chemical treatment at room temperature, enabling Ge channels bonded onto Si wafers. Furthermore, to obtain symmetric performance in n/p FETs, a multi-channel structure of two-channel Si and one-channel Ge is also implemented. Wafer-scale LT-HBT is demonstrated successfully, showing new opportunities for the ultimate device footprint scaling with heterogeneous integration. ? 2020 IEEE.For the first time, we demonstrate heterogeneous complementary FETs (hCFETs) with Ge and Si channels fabricated with a layer transfer technique. The 3D channel stacking integration particularly employs a low-temperature (200 °C) hetero-layers bonding technique (LT-HBT) realized by a surface activating chemical treatment at room temperature, enabling Ge channels bonded onto Si wafers. Furthermore, to obtain symmetric performance in n/p FETs, a multi-channel structure of two-channel Si and one-channel Ge is also implemented. Wafer-scale LT-HBT is demonstrated successfully, showing new opportunities for the ultimate device footprint scaling with heterogeneous integration. © 2020 IEEE.Chemical bonds; Electron devices; Silicon wafers; Surface treatment; Temperature; Bonding techniques; Chemical treatments; Heterogeneous integration; Layer transfer; Low temperatures; Multi-channel structure; Two channel; Wafer scale; Wafer bondingChemical bonds; Electron devices; Silicon wafers; Surface treatment; Temperature; Bonding techniques; Chemical treatments; Heterogeneous integration; Layer transfer; Low temperatures; Multi-channel structure; Two channel; Wafer scale; Wafer bondingFirst demonstration of heterogenous complementary FETs utilizing Low-Temperature (200 °c) Hetero-Layers Bonding Technique (LT-HBT)conference paper10.1109/IEDM13553.2020.93720012-s2.0-85102917891