陳昭岑臺灣大學:化學研究所陳玉芬Chen, Yu-FenYu-FenChen2007-11-262018-07-102007-11-262018-07-102007http://ntur.lib.ntu.edu.tw//handle/246246/51792在生物體內,醣類衍生物被視為訊息攜帶分子,涉及免疫反應、病毒感染,以及細胞間的辨識與訊息傳遞等生物功能,其重要性使得醣質生物學(glycobiology)成為生命科學的新焦點。而醣苷水解酶在控制生物體內醣類的代謝、生成,以及細胞表面分子辨識上扮演了重要角色,若活性失調可能引起多種疾病。因此,這類酵素的研究將有助於臨床上疾病診斷與治療、藥物開發及病理瞭解等。在本論文中,是以商業上可購得來自杏仁的β-葡萄糖水解酶(β-glucosidase)為研究對象。並利用ABPP(activity-based protein profiling)策略發展其活性標示探針,以期能應用於蛋白質體學(proteomics)的研究上。我們成功發展了對β-葡萄糖水解酶具有標示潛力的光親合性(photoaffinity)活性標示探針B-1(為酵素表面標示的探針),以及以酵素催化機制為基礎的(mechanism-based)活性標示探針C-1(為酵素活性中心內標示的探針)。其中,探針B-1的設計包括了S-linked β-D-葡萄糖衍生物、光反應基團,以及生物素標籤。這三重功能性探針的設計是希望探針在與目標蛋白質專一辨識後,經由照光反應可以在活性中心附近形成共價鍵結,再由生物素的標籤輸出訊號。在探針B-1標示蛋白質的相關實驗中,已證實其能與目標酵素活性中心親合性結合,並以共價鍵連結。另外,探針C-1的設計包括了epoxyalkyl glucosides衍生物和疊氮(azido)基團。其設計是希望藉由酵素催化過程與探針上反應基團epoxide形成共價鍵結,再利用疊氮基團進行click反應連接標籤。而在標示蛋白質的相關實驗中,則發現缺乏epoxide的對照物C-1a標示效果較探針C-1佳,但目前仍未知其與酵素形成共價鍵的機制。此外,這些探針進行蛋白質標示的結果顯示配基為S-linked的探針B-1專一性較不高,而具有天然O-linked配基的探針C-1對β-葡萄糖水解酶具有專一性。最後,這些探針組裝式的合成提供了未來其結構改良的簡便性,可再經由配基或反應基團的置換等,來提升探針的專一性標示。In organisms, saccharide derivatives are deemed as information carriers, involving biological functions, such as immune response, virus infection, cell-cell communication and signal transduction, etc.. Their biological importance makes glycobiology become a new focus of life sciences. Among them, glycosidases play important roles in controlling saccharide metabolism, anabolism and cell surface molecule recognization. Any imbalance in their activities may result in many kinds of diseases. So the study of this kind of enzymes will benefit to the clinical diagnosis/treatment, drug discovery and understanding pathology etc. In this thesis, the commercially available β-glucosidase from almonds is used as the research model. Various ABPs (activity-based probes) were developed to label the enzymes hoping to extend the strategy to study proteome. We have succeeded in developing photoaffinitity ABP B-1 (exo-labeling probes) and mechanism-based ABP C-1 (endo-labeling probes), which exhibit potential in labeling β-glucosidases. Probe B-1 consists of a S-linked β-D-glucose derivative, a photoreactive group, and a biotin tag. This trifunctional probe is designed to form the covalent bond by photoreacting group near the active site once the probe and the targeted protein were bound together specifically and the biotin tag could be regarded as output for facile purification. In the protein labeling experiment employing the probe B-1, it showed that the probe can recognize the active site of the targeted enzyme specifically via a covalent bond. The probe C-1 is composed of a epoxyalkyl glucoside derivative and an azido group. A covalent bond between the enzyme and epoxide reactive group forms first, and then an azido group could react with the tag by click reaction afterwards. The protein labeling experiment using control C-1a, which has no epoxide, displayed good labeling effect, despite that the labeling mechanism is not clear. Moreover, probe B-1, which has S-linked ligand, cannot specifically label β-glucosidases, whereas probe C-1, which has native O-linked ligand, can specifically label β-glucosidases. To summarize, the study has laid the foundation for the development of ABPP (activity-based protein profiling) probes. Moreover, the modules nature of the probe designs offer molecular simplicity and concision. The specificity can be improved either by changing the ligand or reactive groups.目錄……………………………………………………………i 圖目錄………………………………………………………………iv 表目錄………………………………………………………………vii 簡稱用語對照表………………………………………………………viii 中文摘要……………………………………………………………xii 英文摘要………………………………………………………………………xiii 緒論…………………………………………………………………1 第一章 蛋白質體學之簡介 1.1 蛋白質體學之發展歷程…………………………………………………………6 1.1.1 蛋白質體學之定義與發展……………………………………6 1.1.2 傳統蛋白質化學與蛋白質體學研究之比較……………………7 1.2 基因體與蛋白質體之比較…………………………………………7 1.3 蛋白質體學之研究方法…………………………………………9 1.3.1 二維凝膠電泳法與質譜儀………………………………………10 1.3.2 化學蛋白質體學之ABPP方法………………………………11 第二章 醣苷水解酶之簡介 2.1 醣質生物學之簡介………………………………………………18 2.1.1 醣質生物學之發展歷程…………………………………………18 2.1.2 生物系統中醣類之功能…………………………………………19 2.1.3 醣類之結構特點…………………………………………………19 2.2 醣苷水解酶之重要……………………………………………………20 2.3 醣苷水解酶之作用機制……………………………………………22 2.3.1 醣苷水解酶之分類………………………………………………22 2.3.2 醣苷水解酶之催化機制………………………………………22 2.4 醣苷水解酶之抑制劑…………………………………………25 2.4.1 可逆抑制劑……………………………………………………25 2.4.2 不可逆抑制劑…………………………………………………27 2.5 醣苷水解酶之活性標示探針………………………………………33 2.6 目標酵素β-葡萄糖水解酶之簡介………………………………38 第三章 針對β-葡萄糖水解酶發展親合性活性標示探針 3.1 金奈米粒子之簡介…………………………………………………39 3.1.1 金奈米粒子之特性………………………………………………39 3.1.2 金奈米粒子之合成……………………………………………42 3.1.3 金奈米粒子應用於生物探針之簡介……………………44 3.2 親合性活性標示探針之設計與合成…………………………………………47 3.2.1 Dalibor Sames所發展具epoxide反應基團之親合性探針……47 3.2.2 親合性活性標示探針之設計………………………………….49 3.2.3 親合性活性標示探針之合成…………………………………51 3.3 結論……………………………………………………………62 第四章 針對β-葡萄糖水解酶發展光親合性活性標示探針 4-1 光親合性標示之簡介與應用………………………………………63 4.2 光親合性活性標示探針之設計與合成…………………………69 4.2.1 光親合性活性標示探針之設計…………………………………69 4.2.2 光親合性活性標示探針之合成………………………………71 4.3 結果與討論…………………………………………………………80 4.3.1 光親合性探針標示蛋白質之實驗流程…………………………80 4.3.2 光親合性探針標示蛋白質之結果分析………………………83 4.4 結論…………………………………………………89 第五章 針對β-葡萄糖水解酶發展以催化機制為基礎的活性標示探針 5.1 引入click化學的ABPP方法之簡介與應用………………………90 5.2 以酵素催化機制為基礎的活性標示探針之設計與合成…………94 5.2.1 以酵素催化機制為基礎的活性標示探針之設計………………94 5.2.2 以酵素催化機制為基礎的活性標示探針之合成………………97 5.3 結果與討論…………………………………………103 5.3.1 以酵素催化機制為基礎的探針標示蛋白質之實驗流程……103 5.3.2 以酵素催化機制為基礎的探針標示蛋白質之結果分析……105 5.4 結論………………………………………………………………121 第六章 總結…………………………………………………………122 實驗部分 壹、一般敘述……………………………………………123 貳、實驗步驟及光譜數據………………………………………125 參、生物活性測試方法……………………………………………165 參考文獻…………………………………………………174 附錄…………………………………………………………………19348548822 bytesapplication/pdfen-USβ-葡萄糖水解酶蛋白質體學ABPP光親合性以酵素催化機制為基礎的β-glucosidaseproteomicsphotoaffinitymechanism-based針對β-葡萄糖水解酶發展酵素表面及活性中心內標示的兩種探針以應用於蛋白質體學研究Developing exo- versus endo-Labeling Probes for β-Glucosidase Towards the Application in Proteomicsthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/51792/1/ntu-96-R94223031-1.pdf