2018-06-012024-05-13https://scholars.lib.ntu.edu.tw/handle/123456789/646463摘要:機器智慧化首須擷取大量操作參數以進行數據分析、取得各種操作環境變數下之最佳操作參數,而溫度是影響最佳操作參數之重要變因;為確保機器是在最佳操作參數下運作,機器操作時之溫度需要精準地控制。此外機器運作下常有大量廢熱產生,散熱性影響機器性能與壽命甚大。本子計畫的第一個目標擬針對智慧機械裝置進行熱管理、利用熱電晶片進行精準溫控,研究利用熱電晶片擷取廢熱進行發電之可行性,所得電力可用來支援感測器或致動器所需之電力,也可用來支援前述用於溫控之熱電晶片所需之電力,達到節能之目的。第二個目標則是利用感測器所得之訊號進行振動量測分析,進而改善設計。 本子計畫之創新處在於以熱電晶片回收能量,所發出之電再用來供應溫控熱電晶片所需之電力,或是振動感測器所需之電力,創造一個自給自足的智慧機台。<br> Abstract: Machine intelligence is enabled by data analysis of large amount of operational parameters obtained during machine operations under various environmental conditions. Temperature is one of the most important parameters that may affect the operational effectiveness. Moreover, waste heat is often generated during operation and whether the heat is dissipated properly can significantly affect the performance and life of the machines. The first aim of this project is to conduct thermal management of intelligent machines by using thermoelectric chips. More specifically we investigate the feasibility of turning the waste heat into reusable electricity to drive sensors. The second aim is to use those self-powered sensors to monitor the dynamic response of intelligent machines and enhance their in situ performance.智慧機器熱管理振動熱電晶片Intelligent machinethermal managementvibrationthermoelectric generator高等教育深耕計畫-核心研究群計畫 【智慧機械之熱管理與振動分析】