余政靖臺灣大學:化學工程學研究所陳俊宏Chen, Jyun-HongJyun-HongChen2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/52352聚乙烯醇為化學工業中用途廣泛的聚合物,但每製造1公噸聚乙烯醇會伴隨約1.6公噸的副產品乙酸甲酯,所以乙酸甲酯的再利用就顯得很重要。一般來說,乙酸甲酯有兩種化學路徑可以將其再利用。一為水解反應產生醋酸,另外一種為轉酯反應,本論文就針對後者的反應進行可行設計以及控制。我們所選擇的醇類為正丁醇,以進行MeOH + BuAc ↔ MeAc + BuOH的反應。在過去的文獻中,主要的設計有兩個架構,一為四根塔的架構,另一為三根塔的架構。在過去的架構中,為了打破正丁醇與乙酸丁酯共沸點,多花了不少的成本。在仔細的了解這些架構後,提出一個兩根蒸餾塔的架構。首先第一根是傳統蒸餾塔,其後接著一根反應蒸餾塔來打破共沸組成。由於平衡常數並不是非常的高,因此反應蒸餾塔中,過量的乙酸甲酯是必要的。一個有系統的最適化程序則用來取得最佳的板數以及進料位置。而結果也顯示出,本論文所提出的設計架構年總成本至少是過去文獻年總成本的三分之二。 最後,對這個回流架構提出幾個可行的動態設計。一個有系統的設計步驟從反應蒸餾塔開始然後設計回傳統蒸餾塔。三個可能動態架構:雙點溫控、一組成一溫度控制和雙組成控制都被模擬出來。其中雙點溫控的效果最好。而溫度控制所造成的濃度偏差,可用前饋控制得到令人滿意的結果。In the production of Polyvinyl Alcohol (PVA), a large amount of methyl acetate (MeAc) is produced as by-product, i.e., 1.6 kg MeAc/1 kg PVA. Since methyl acetate has relatively low economical value, efficient reuse of MeAc is an important issue in the PVA plants. Generally, two process alternatives exist. One is hydrolysis where acetate is converted back to acetic acid and the other is transesterification where MeAc is converted to a higher value acetate. The second chemical route is explored here and, in this work, methyl acetate transesterification using butanol is studied. The transeasterification reaction is MeOH + BuAc ↔ MeAc + BuOH. Two plantwide designs using reactive distillation (RD) can be found in the literature. One is a four column configuration and the other is a three-column design. In both examples, attempts have been made to break the azeotrope between BuOH and BuAc to achieve high purity product. Carefully examining the process, a new flowsheet is proposed. It includes one conventional distillation column followed by a reactive column in which the azeotrope is reacted away in the RD column. Because of relatively low chemical equilibrium constant, “excess” reactant (MeAc) design is considered. A systematic design procedure is used to optimize the flowsheet. The results show that the two-column design is capable of producing high-purity butyl acetate and methanol with a TAC only 2/3 of the three-column design. Finally, the control structure design for this recycle plant is addressed. A systematic procedure is proposed for the plantwide control system design which starts from the RD column and then back to the distillation column. Three possible quality control structures are considered: two-temperature scheme, one-temperature-one-composition control and two-composition control. Dynamic simulation results show that good control can be achieved using two-temperature control and, moreover, steady-state composition offset can be mitigated using feedforward compensation for temperature set points.目錄 致謝 I 摘要 Ⅲ Abstract V 目錄 Ⅶ 圖索引 IX 表索引 XI 1. 緒論 1 1.1. 前言 1 1.2. 文獻回顧 4 1.3. 研究動機與目的 7 1.4. 組織章節 9 2. 熱力學及動力學模式 11 2.1. 前言 11 2.2. 熱力學模式 12 2.2.1液相之熱力學模式 13 2.2.2氣相之熱力學模式 14 2.2.3乙酸丁酯轉酯反應蒸餾系統之蒸餘曲線圖分析 15 2.3. 動力學模式 19 2.4. 結論 21 3. 穩態設計 23 3.1. 前言 23 3.2. 乙酸丁酯轉酯製程 23 3.3. 最適化步驟 25 3.4. 乙酸丁酯轉酯反應系統之最適化設計 28 3.4.1反應蒸餾塔中精餾段及汽提段板數的影響 28 3.4.2反應蒸餾塔中反應段板數的影響 29 3.4.3反應蒸餾塔中共沸進料位置的影響 30 3.4.4傳統蒸餾塔中總板數與進料位置的影響 32 3.4.5回流量的影響 34 3.4.6各種轉酯系統的比較 41 3.5. 乙酸丁酯轉酯系統溫度分佈及濃度分佈之探討 46 3.5.1溫度分佈之探討 46 3.5.2濃度分佈之探討 47 3.6. 總結 49 4. 動態模擬及控制 51 4.1. 前言 51 4.2. 控制環路設計 51 4.3. 控制架構的探討 52 4.3.1控制架構分類(CS1~CS3) 52 4.3.2 系統所承受的干擾 53 4.4. CS1三溫度控制 53 4.4.1開環路靈敏度分析 55 4.4.2非方形相對增益 57 4.4.3控制器參數調諧方法 61 4.4.4 CS1三溫度控制動態模擬結果 64 4.5. 溫度控制的改善 66 4.6. CS2兩溫度一濃度控制 69 4.6.1 RGA配對 69 4.6.2 控制器參數 70 4.6.3 CS2三溫度控制動態模擬結果 71 4.7. CS3一溫度兩濃度控制 72 4.7.1 CS3二組成及一溫度控制動態模擬結果 72 5. 結論 75 附錄A 年總成本計算公式 77 附錄B 庫存控制環路控制器參數 79 參考文獻 811024180 bytesapplication/pdfen-US反應蒸餾塔乙酸丁酯轉址reactive distillationbutyl acetatetransesterification利用反應性蒸餾系統經由轉酯反應生產乙酸丁酯之設計與控制Design and Control of Reactive Distillation Processes for the Production of Butyl Acetate via Transesterificationthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/52352/1/ntu-95-R93524079-1.pdf