指導教授:楊照彥臺灣大學:應用力學研究所康偉逸Kang, Wei-YiWei-YiKang2014-11-302018-06-292014-11-302018-06-292014http://ntur.lib.ntu.edu.tw//handle/246246/264091本文使用相空間之直接解法,模擬利用鬆弛時間近似之古典波茲曼模型方程式及半古典橢球波茲曼模型方程式,並同時處理三種統計之粒子。在時間離散中,因為非線性波茲曼模型方程式之碰撞項(源項)非常複雜,故引入漸近保守算則,使得碰撞項與鬆弛時間能做拆解。引入漸近保守算則後,使用四階準確之Runge-Kutta法將時間離散。在空間離散中,本文採用五階準確性之加權基本不震盪算則;在速度離散中,使用分立坐標法使得波茲曼模型方程式與速度空間相互獨立。本文利用波茲曼模型方程式求解二維黎曼(Riemann)問題,且調整鬆弛時間至極小,使得波茲曼模型方程式達到尤拉極限(Euler Limit),並與文獻中所模擬之結果做比較。基於氣體分子動力學理論,本文成功解析波茲曼模型方程式在不同初始條件之下交互作用之複雜震波、Slip Line、膨脹波等現象,且利用較少網格得到較佳之結果。且在半古典波茲曼模型方程式中,成功模擬三種不同統計粒子之量子傳輸現象。An accurate and direct algorithm for solving the classical Boltzmann equation and the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. In time domain, we use asymptotic-preserving method for solving two-dimensional Riemann problem by the classical Boltzmann equation and the semiclassical Boltzmann equation with very small relaxation time. After using asymptotic-preserving, we use fourth-order Runge-Kutta method to discrete time domain. In space domain, we use fifth-order weighted essentially non-oscillatory scheme to evolve the flux term. The discrete ordinate method is applied to remove the microscopic velocity dependency of the distribution function that renders the Boltzmann BGK equation in phase space to a set of hyperbolic conservation laws with source terms in physical space. Computational examples of two-dimensional Riemann problems for rarefied gas flows at very small relaxation time are presented. By using WENO scheme, the results show good resolution in capturing the main flow features while using grids with few good points.口試委員會審定書 # 誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 引言 1 1.2 研究動機 2 1.3 文獻回顧 4 1.4 本文內容 6 第二章 基本理論及波茲曼方程式 8 2.1 稀薄氣體動力學基本理論 8 2.1.1 流體流動分類 8 2.1.2 分子速度分佈函數與巨觀量 9 2.2 波茲曼方程式 12 2.3 波茲曼方模型方程式 14 2.3.1 Bhatnagar-Gross-Krook (BGK)模型方程式 14 2.3.2 Ellipsoidal Statistical-BGK (ES-BGK)模型方程式 16 2.3.3 半古典橢球模型方程式 17 2.3.4 連續體模型方程式 22 第三章 數值方法解波茲曼模型方程式 24 3.1 無因次化 24 3.1.1 古典波茲曼模型方程式 24 3.1.2 半古典波茲曼橢球模型方程式 27 3.2 分立坐標法及其應用 28 3.2.1 分立坐標法基本概念 28 3.2.2 積分公式 28 3.3 漸近保守算則 30 3.4 時間離散算則 31 3.5 空間離散算則 33 第四章 數值結果與討論 37 4.1 古典波茲曼模型方程式 37 4.1.1 初始條件設定 37 4.1.2 數值結果 39 4.1.3 結果討論 64 4.2 半古典橢球波茲曼模型方程式 69 4.2.1 初始條件設定 69 4.2.2 數值結果 69 4.2.3 結果討論 88 4.3 結論 89 4.4 未來展望 90 REFERENCE 91134684064 bytesapplication/pdf論文公開時間:2016/07/15論文使用權限:同意有償授權(權利金給回饋本人)直接解法古典波茲曼模型方程式波茲曼方程式半古典橢球波茲曼模型方程式加權基本不震盪算則分立坐標法漸近保守算則利用漸近保守高解析算則解波茲曼模型方程式Computation of Boltzmann Model Equation Using Asymptotic-Preserving and WENO Schemethesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/264091/1/ntu-103-R01543084-1.pdf