郭博成臺灣大學:材料科學與工程學研究所許書齊Sheu, Shu-ChiShu-ChiSheu2007-11-262018-06-282007-11-262018-06-282006http://ntur.lib.ntu.edu.tw//handle/246246/55268摘要 隨著高記錄密度光碟的發展,研究高倍速相變化記錄層材料是很重要的發展方向,經由前人的研究報導指出In15Sb85具有快速的結晶速率(<6 ns),但由於非晶相的不穩定所以我們試著添加其他元素(Zn、Bi)來穩定其非晶相記錄點。本實驗採用In和Sb靶以DC直流磁控共鍍方式製備200Å之In15Sb85 合金薄膜,作為高倍速相變化光碟片之記錄層材料。由Tx 熱分析實驗結果顯示添加Zn 後的(In15Sb85)100-xZnx 薄膜(x=0~17.4)之相變化溫度約在181℃~221 ℃之間,活化能值則介於2.18∼3.26 eV 之間。添加Bi 後的(In15Sb85)100-xBix 薄膜之相變化溫度約在181~167 ℃之間,活化能值則介於2.18∼1.5 eV 之間。顯示添加Zn 可以穩定非晶相,添加Bi 會增加結晶速率。 光譜分析結果顯示,(InSb)100-xZnx 與(InSb)100-xBix 薄膜光吸收率皆隨Zn 與Bi 添加量的增加而些微下降,但都具有良好的光吸收率。 在反射率對比值方面,(InSb)100-xZnx 薄膜(x=0~17.4) 對比值隨著Zn 添加量的增加而下降,但是在x=6.2 時在405nm 與650nm 波長下都具有15 %以上的對比值,符合單層相變化記錄層的要求。由XRD 結構分析結果顯示,初鍍(InSb)100-xMx 薄膜(M=Zn or Bi)沒有明顯地結晶,經過250℃,30 分鐘熱處理後,薄膜產生結晶。在(InSb)100-xZnx 薄膜中當x=0~9.1 時薄膜主要為Sb 的相,當x 超過13.7開始出現含有ZnSb 的相。在(InSb)100-xBix 中,當x=8.2~18.3 時,薄膜除了Sb 相之外還有BiIn2 及Bi 的相產生。 TEM 微結構分析發現初鍍的In14.5Sb85.5 薄膜為微晶結構。經過250℃,30 分鐘熱處理之後,薄膜發生大小不一的晶粒粗化,晶粒 大小範圍介於15~75nm。平均晶粒大小約30nm。經過350℃,30分鐘熱處理後晶粒大小變得較為平均並且更加粗化,大約為50nm。添加6.2 at.%的Zn 平均晶粒大小為22nm,而添加17.4 at.%的Zn 時平均晶粒大小為32nm,而添加5.5 at.%的Bi 時平均晶粒大小為50nm。添加18.3 at.%的Bi 時平均晶粒大小為72nm。Abstract As the development of high density optical recording disc, studying of high speed phase change recording layer is an important goal. It had been reported that the In15Sb85 film has high speed crystallization rate(<6 ns). Because the stability of amorphous mark formed is not very stable, We doped Zn and Bi elements to stable the amorphous recording mark formed. In this study, the In15Sb85 films with 200Å thickness were produced by DC magnetron co-sputtering of In and Sb target, and investigated their application to the recording layer of high speed phase change optical recording media. Thermal analyses show that the phase change temperature of (InSb)100-xZnx films (x=0~17.4) are between 181℃ and 221 ℃, and the activation energy are between 2.18 and 3.26eV . The phase change temperature of (InSb)100-xBix films (x=0~18.3 ) are between 181℃~167℃, and the activation energy are decreased between 2.18 and 1.50 eV. It means that Zn doping stable stabe the amorphous phase formed;Bi doping can increase the crystallization rate. The spectrophotometer analyses show that the absorption of (InSb)100-xZnx and (InSb)100-xBix decreases with increasing Zn and Bi contents. But both of them still have good optical absorption. The optical contrast of (InSb)100-xZnx and (InSb)100-xBix films both decrease with increasing Zn or Bi contents. Their optical contrats are decreased with increasing Zn or Bi contents, but the 15% optical contrast can still be obtained when the Zn contentsequal increases 6.2 at.%. The X-ray diffraction analysis shows that the as-deposited (InSb)100-xZnx and (InSb)100-xBix films do not have any diffraction peak. After annealing at 250℃ for 30 min, the major crystalline phase of (InSb)100-xZnx film (x=0~9.1) are Sb and InSb. The Sb、InSb and ZnSb crystalline phases are appeared as x > 13.7. After the same annealing condition, the Sb、Bi and BiIn2 crystalline phases are found in the (InSb)100-xBix film (0 < x < 18.3 ). The TEM analysis shows that the average grain size of the InSb film is about 30 nm after annealing at 250℃ for 30 min. After Zn doped, the average grain size of the InSb film is decreased to 22 nm as 6.2 at.% Zn is added. However, the grain size is increased to about 32 nm when 17.4 at.% Zn is added. On the other hands, as 5.5 at.% Bi is doped into the InSb film, the average grain size of the film is increases to about 50 nm. When 18.3 at.% Bi is added, the grain grows and the average grain size is about 72 nm.目錄 摘要 I Abstract III 圖目錄 VIII 表目錄 XVI 第一章 前言 1 第二章 光記錄媒體的發展與原理 4 2-1 光碟技術的發展 4 2-1-1 Compact Disc 4 2-1-2 Digital Versatile Disc (DVD) 4 2-1-3 藍光光碟(Blue-Ray Disc) 5 2-2 光記錄原理 6 2-3 光碟片之各膜層材料要求 9 2-3-1 記錄層 9 2-3-2 介電層 12 2-3-3 反射層 14 2-4 文獻回顧 14 2-4-1 薄膜分解型 14 2-4-2 金屬島狀薄膜(metal island thin film) 15 2-4-3 半導體/金屬雙層薄膜型(Semiconductor/metal bilayers) 16 2-4-4 相變化薄膜 18 2-5 研究方向 27 第三章 實驗方法與步驟 36 3-1 實驗流程 36 3-2 試片製備 37 3-2-1 靶材選取 37 3-2-2 基板前處理 37 3-2-3 薄膜濺鍍 39 3-2-4 薄膜熱處理 40 3-3 薄膜基本性質分析與量測 41 3-3-1 AFM薄膜厚度量測 41 3-3-2 薄膜成分分析 42 3-3-3 薄膜相變化溫度量測(TX) 42 3-3-4 薄膜光學性質分析(光譜儀) 43 3-3-5 薄膜結晶結構分析(XRD) 44 3-3-6 薄膜顯微結構觀察(TEM) 44 第四章 結果與討論 50 4-1 In15Sb85薄膜的製備 50 4-1-1 濺鍍功率對InSb薄膜成分的影響 50 4-1-2 濺鍍時間對InSb薄膜厚度的影響 51 4-2 (In15Sb85)100-xMx 合金薄膜( M=Zn,Bi )的製備 51 4-3 薄膜成分分析結果 52 4-4 薄膜活化能分析 52 4-4-1 TX相變溫度的量測 52 4-4-2 薄膜活化能分析 54 4-4-3 InSb+Zn薄膜之活化能 55 4-4-4 InSb+Bi薄膜之活化能 57 4-5 薄膜光學性質分析 59 4-5-1 反射率 59 4-5-2 吸收率 66 4-6 XRD顯微結構分析 69 4-7 TEM微結構觀察 71 第五章 結論 124 參考文獻 1274602539 bytesapplication/pdfen-US相變化光碟高倍速InSbphase change recording,high speed添加元素對高倍速InSb光學記錄薄膜之光學性質與顯微結構的影響Effects of dopants on the optical properties and microstructure of the high speed InSb optical recording thin filmthesishttp://ntur.lib.ntu.edu.tw/bitstream/246246/55268/1/ntu-95-R93527067-1.pdf