2007-06-012024-05-16https://scholars.lib.ntu.edu.tw/handle/123456789/666438摘要:近年來電磁表面波的研究方興未艾。當晶格常數與光波波長相當時,金屬內自由電子的集體振動會與電磁波動藕合,而在晶體內產生表面電漿波。此種波具有高度集中及增強的性質,使得光之傳播可以在比波長更小的尺度下進行。利用此種特性來製作奈米尺度的光波元件,作為智慧感測器便為可行。然而表面電漿波模態為一非線性特徵值問題,無法用一般標準的方法求解。在本計畫我們將根據表面電漿之物理特性,來求解表面電漿特徵模態。在古典介電函數的基礎上,我們最近發展的介面算子法將用來直接計算表面電漿模態,而不需使用轉換或偵測方法。而智慧感測器之光學與電磁特性,也可以求得。另一方面,為補古典理論之不足,我們亦將建立表面電漿之微觀量子理論,為此,我們提議發展有關介電響應函數的理論,其與古典理論結合之方法有二:一則介電響應函數直接做為古典理論計算的介電函數,或者發展空間上多尺度的連絡法,以微觀理論適用於奈米結構的近場部分,連結適用於遠場部分之古典宏觀理論。微觀量子理論的發展將以密度泛函理論及密度矩陣(算子)法來進行。<br> Abstract: Lately, there have been renewed research interests in the study of surface waves in electromagnetics. In particular, at length scales comparable to the wavelength, collective oscillation of free charges in the metals may couple with the electromagnetic fields and give rise to surface plasmons. The localized nature of surface plasmons enables us to control the propagation of light in a subwavelength scale, and therefore fabrication of optical devices with nano-meter size used for smart sensors can be feasible. However, the problem of surface plasmon modes may involve a nonlinear eigensystem which cannot be solved by standard methods. In this project, we try to solve the problem by taking into consideration of the basic feature of surface plasmons. In the classical formulation in terms of dielectric functions, surface plasmon modes can be computed directly by our recently developed method-called interfacial operator approach-without testing or transformation, and the optical and electromagnetic properties of the smart sensors can be obtained. Another important development in this area is the construction of a useful microscopic theory of surface plasmon. In this aspect, we propose to develop a quantum theory for the dielectric response function. The computational electromagnetism (CEM) method can be linked to these studies by either using the dielectric response function as the input to the CEM method, or by constructing a multiscale (multi-resolution) scheme connecting the microscopic method in the vicinity of the nanostructure with the macroscopic method in the far field. Density functional theory and density matrix (operator) method will be applied in this line of work.奈米光學表面電漿特徵模態介電響應函數Nanopohotonicssurface plasmonseigenmodesdielectric response function前瞻性與產學合作研究計畫/工學院/表面電漿之理論與計算